98%
921
2 minutes
20
Objectives: To illustrate the use of process mining concepts, techniques, and tools to improve the systematic review process.
Study Design And Setting: We simulated review activities and step-specific methods in the process for systematic reviews conducted by one research team over 1 year to generate an event log of activities, with start/end dates, reviewer assignment by expertise, and person-hours worked. Process mining techniques were applied to the event log to "discover" process models, which allowed visual display, animation, or replay of the simulated review activities. Summary statistics were calculated for person-time and timelines. We also analyzed the social networks of team interactions.
Results: The 12 simulated reviews included an average of 3,831 titles/abstracts (range: 1,565-6,368) and 20 studies (6-42). The average review completion time was 463 days (range: 289-629) (881 person-hours [range: 243-1,752]). The average person-hours per activity were study selection 26%, data collection 24%, report preparation 23%, and meta-analysis 17%. Social network analyses showed the organizational interaction of team members, including how they worked together to complete review tasks and to hand over tasks upon completion.
Conclusion: Event log and process mining can be valuable tools for research teams interested in improving and modernizing the systematic review process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jclinepi.2018.06.011 | DOI Listing |
Genome Biol
September 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.
Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.
PLoS One
September 2025
Department of Smart Manufacturing, Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China.
In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness.
View Article and Find Full Text PDFRSC Adv
September 2025
School of Chemical Engineering, Minhaj University Lahore Lahore 54000 Punjab Pakistan.
Naomaohu lignite (NL) from Hami, Xinjiang, was ultrasonically extracted with a mixed solvent of CS and acetone (in equal volumes) to obtain the extract residue (ER). The ER was then separated based on density differences with CCl to yield the corresponding light residue (NL-L). The composition and structural characteristics of the light residue were characterized by proximate, ultimate, infrared, and thermogravimetric analyses (TG-DTG).
View Article and Find Full Text PDFEnviron Res
September 2025
National Key Laboratory of Deep Coal Mining Safety and Environmental Protection, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
Zeolite synthesis from fly ash offers recycling and environmental benefits for carbon dioxide capture, but varying fly ash composition from different sources has different compositions, leading to inconsistent adsorption results. To achieve high CO adsorption performance and stability in zeolite synthesis from fly ash systems, this study established an element-controlled simulated fly ash system with Ca/Fe gradient differences. Hydrothermal synthesis yielded zeolites with optimized oxide ratios for CO adsorption.
View Article and Find Full Text PDFUltrasonics
September 2025
Faculty of Land Resource Engineering, Kunming University of Science and Technology, Yunnan 650093, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Yunnan Province, Kunming, Yunnan
Identifying and predicting the catastrophic failure of brittle rock remains a challenging task, yet it is crucial for developing early warning systems and preventing dynamic rock hazards. In this study, we employed the propagative parameters of ultrasonic waves and information from acoustic emission (AE) events to characterize the brittle failure of a flawed sandstone sample under uniaxial compression. A sliding event window method was developed to obtain the temporal b-value, effectively revealing microcrack growth based on the frequency-magnitude distribution of AE events.
View Article and Find Full Text PDF