98%
921
2 minutes
20
It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase () gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative expression of CW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742856 | PMC |
http://dx.doi.org/10.3389/fphys.2017.01037 | DOI Listing |
Plant Physiol Biochem
March 2025
Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cu
Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.
View Article and Find Full Text PDFPlant Sci
December 2024
Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China. Electronic address: lfhe@gx
The toxicity of aluminum (Al) in acidic soil inhibits plant development and reduces crop yields. Programmed cell death (PCD) is one of the important mechanisms in the plant response to Al toxicity. However, it is yet unknown if S-nitrosoglutathione reductase (GSNOR) provides Al-PCD.
View Article and Find Full Text PDFJ Exp Bot
March 2024
College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
The toxicity of aluminum (Al) in acidic soil inhibits plant root development and reduces crop yields. In the plant response to Al toxicity, the initiation of programmed cell death (PCD) appears to be an important mechanism for the elimination of Al-damaged cells to ensure plant survival. In a previous study, the type I metacaspase AhMC1 was found to regulate the Al stress response and to be essential for Al-induced PCD.
View Article and Find Full Text PDFJ Plant Physiol
October 2023
College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College
The toxicity of aluminum (Al) in acidic soil is a prevalent problem and causes reduced crop yields. In the plant response to Al toxicity, programmed cell death (PCD) appears to be one of the important mechanisms. However, the regulation of Al-induced PCD remains poorly understood.
View Article and Find Full Text PDFJ Hazard Mater
February 2023
MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Lipid peroxidation is a primary event in plant roots exposed to aluminum (Al) toxicity, which leads to the formation of reactive aldehydes. Current evidence demonstrates that the resultant aldehydes are integrated components of cellular damage in plants. Here, we investigated the roles of aldehydes in mediating Al-induced damage, particularly cell death, using two wheat genotypes with different Al resistances.
View Article and Find Full Text PDF