Optimization of a Binary Concrete Crack Self-Healing System Containing Bacteria and Oxygen.

Materials (Basel)

Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An optimized strategy for the enhancement of microbially induced calcium precipitation including spore viability ensurance, nutrient selection and O2 supply was developed. Firstly, an optimal yeast extract concentration of 5 g/l in sporulation medium was determined based on viable spore yield and spore viability. Furthermore, the effects of certain influential factors on microbial calcium precipitation process of H4 in the presence of oxygen releasing tablet (ORT) were evaluated. The results showed that CaO2 is preferable to other peroxides in improving the calcium precipitation by H4. H4 strain is able to precipitate a highly insoluble calcium at the CaO2 dosage range of 7.5-12.5 g/l, and the most suitable spore concentration is 6 × 108 spores/ml when the spore viability (viable spore ratio) is approximately 50%. Lactate is the best carbon source and nitrate is the best nitrogen source for aerobic incubation. This work has laid a foundation of ternary self-healing system containing bacteria, ORT, and nutrients, which will be promising for the self-healing of cracks deep inside the concrete structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459201PMC
http://dx.doi.org/10.3390/ma10020116DOI Listing

Publication Analysis

Top Keywords

calcium precipitation
12
spore viability
12
self-healing system
8
system bacteria
8
viable spore
8
spore
6
optimization binary
4
binary concrete
4
concrete crack
4
crack self-healing
4

Similar Publications

Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.

View Article and Find Full Text PDF

Kidney stones have a high recurrence rate-10% within 5 years and 50% within 10. Crystalluria reflects the urinary physicochemical environment and may serve as a recurrence marker, but key crystals like brushite are rarely detected under ambient conditions. This study aimed to identify novel recurrence markers by inducing crystallization through urine cooling and analyzing crystal composition.

View Article and Find Full Text PDF

Strontium (Sr) is a bone-seeking element characterized by its dual function of stimulating bone growth and preventing bone resorption. On the other hand, alginates (Alg) have distinct physicochemical characteristics from other natural polysaccharides because of their ability to encapsulate proteins and drugs. This work aimed to prepare novel hybrid inorganic/organic strontium alginate (Sr-Alg) nanoparticles for use as a targeting ligand in bone regeneration.

View Article and Find Full Text PDF

A copper-based single-atom material effectively controls plant diseases with nearly zero soil residue and low phytotoxicity.

Sci Bull (Beijing)

August 2025

State Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei

A growing population necessitates the development of sustainable agriculture, which requires achieving atom economy in pesticide delivery, fertilization, and so on. To this end, we focus on single-atom materials (SAMs) to enhance atom utilization within agricultural systems. In this study, we report a novel pesticide for plants, a single-atom copper (Cu) formulation, by employing a precipitation-equilibrium-driven (K-driven) method to anchor Cu onto a calcium carbonate (CaCO) carrier.

View Article and Find Full Text PDF

This study investigates the durability enhancement of bacterial concrete incorporating microbial strains (Bacillus Licheniformis, Bacillus Flexus, Pseudomonas stutzeri, Escherichia coli, and Bacillus subtilis) through microbial-induced calcium carbonate precipitation (MICP). Various durability tests, including water absorption, RCPT, sulphate resistance, hydrochloric acid strength loss, sorptivity, and energy-dispersive X-ray analysis (EDAX), were conducted to evaluate the effectiveness of bacterial concrete. Bacterial concrete significantly reduces water absorption and chloride ion penetration, with Bacillus subtilis (M16) and Bacillus Flexus (M7) demonstrating the highest impermeability.

View Article and Find Full Text PDF