Publications by authors named "Hiroshi Y Yoshikawa"

Kidney stones have a high recurrence rate-10% within 5 years and 50% within 10. Crystalluria reflects the urinary physicochemical environment and may serve as a recurrence marker, but key crystals like brushite are rarely detected under ambient conditions. This study aimed to identify novel recurrence markers by inducing crystallization through urine cooling and analyzing crystal composition.

View Article and Find Full Text PDF

This study explores thermosensitive nanostructured coacervates formed by mixing ABA and AB block copolymers. Coacervates are liquid-liquid phase separation systems that can concentrate specific biomolecules, making them useful for biomedical applications such as sustained drug release. This study focuses on creating complex coacervates using ABA-type triblock copolymers that can bridge isolated polyion complex (PIC) domains, enabling the formation of well-ordered assemblies of polyethylene glycol (PEG)-conjugated PIC nanoparticles.

View Article and Find Full Text PDF

The preparation of desired crystal polymorphs has significant implications for designing materials with tailored properties; however, conventional methods often face limitations in terms of precision and reproduction. In this study, we demonstrate the crystallization of a metastable phase of potassium acetate by ultrashort laser ablation of supersaturated aqueous solutions. By varying the laser energy (0.

View Article and Find Full Text PDF

The selective manipulation of crystal polymorphs holds profound implications across diverse scientific and industrial fields, as distinct polymorphs exhibit unique physical and chemical properties. This study demonstrates selective polymorphic manipulation by laser trapping - a technique enabling contactless manipulation and condensation of matter at the nanometer-scale and micrometer-scale. L-cysteine, a ubiquitous amino acid employed in pharmaceuticals and food additives, was targeted.

View Article and Find Full Text PDF
Article Synopsis
  • - We created a new optical microscope that can simultaneously image both the fluidity and structure of cell membranes to understand cell adhesion better.
  • - In tests, we observed how a giant unilamellar vesicle interacts with a glass surface, revealing areas of membrane fluidity and corresponding adhesion sites in both cancerous and non-cancerous cells.
  • - By manipulating cholesterol and unsaturated lipids, we identified distinct adhesion signatures in cancer cells, suggesting that our microscope could help study membrane properties in various cell types beyond just cancer.
View Article and Find Full Text PDF

Calcium oxalate kidney stones, the most prevalent type of kidney stones, undergo a multi-step process of crystal nucleation, growth, aggregation, and secondary transition. The secondary transition has been rather overlooked, and thus, the effects on the disease and the underlying mechanism remain unclear. Here, we show, by periodic micro-CT images of human kidney stones in an ex vivo incubation experiment, that the growth of porous aggregates of calcium oxalate dihydrate (COD) crystals triggers the hardening of the kidney stones that causes difficulty in lithotripsy of kidney stone disease in the secondary transition.

View Article and Find Full Text PDF

The inherent variability in cell culture techniques hinders their reproducibility. To address this issue, we introduce a comprehensive cell observation device. This new approach enhances the features of existing home-use scanners by implementing a pattern sheet.

View Article and Find Full Text PDF

Mucus is part of the innate immune system that defends the mucosa against microbiota and other infectious threats. The mechanical characteristics of mucus, such as viscosity, elasticity, and lubricity, are critically involved in its barrier function. However, assessing the mechanical properties of mucus remains challenging because of technical limitations.

View Article and Find Full Text PDF

Studies on chiral spectroscopy have recently demonstrated strong enhancement of chiral light-matter interaction in the chiral near-field of Mie resonance in high-refractive-index dielectric nanostructures by studies on chiral spectroscopy. This situation has motivated researchers to demonstrate effective chiral photosynthesis under a chiral near-field beyond circularly polarized light (CPL) as a chiral source. However, the effectivity of the chiral near-field of Mie resonance for chiral photosynthesis has not been clearly demonstrated.

View Article and Find Full Text PDF

Interference reflection microscopy (IRM) is a powerful, label-free technique to visualize the surface structure of biospecimens. However, stray light outside a focal plane obscures the surface fine structures beyond the diffraction limit ( ≈ 200 nm). Here, we developed an advanced interferometry approach to visualize the surface fine structure of complex biospecimens, ranging from protein assemblies to single cells.

View Article and Find Full Text PDF

Spatiotemporal control of the polymorphic phase transition of glycine crystals was demonstrated by three-dimensional (3D) processing with a focused femtosecond laser pulse as an external stimulus. We found that the transition from a metastable form (β-form) to more stable ones (α- or γ-form) could be triggered from the irradiated area of not only the surface but also inside of glycine crystals. This 3D processing with a focused femtosecond laser pulse enabled us to precisely monitor the transition dynamics from a targeted position to the entire part of crystals.

View Article and Find Full Text PDF

Organisms have evolved under gravitational force, and many sense the direction of gravity by means of statoliths in specialized cells. In flowering plants, starch-accumulating plastids, known as amyloplasts, act as statoliths to facilitate downstream gravitropism. The gravity-sensing mechanism has long been considered a mechanosensing process by which amyloplasts transmit forces to intracellular structures, but the molecular mechanism underlying this has not been elucidated.

View Article and Find Full Text PDF

Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization.

View Article and Find Full Text PDF

In the intestine, mucin 2 (Muc2) forms a network structure and prevents bacterial invasion. Glycans are indispensable for Muc2 barrier function. Among various glycosylation patterns of Muc2, sialylation inhibits bacteria-dependent Muc2 degradation.

View Article and Find Full Text PDF

Focused irradiation with ultrashort laser pulses realized the fine spatiotemporal control of ice crystallization in supercooled water. An effective multiphoton excitation at the laser focus generated shockwaves and bubbles, which acted as an impulse for inducing ice crystal nucleation. The impulse that was localized close to the laser focus and accompanied by a small temperature elevation allowed the precise position control of ice crystallization and its observation with spatiotemporal resolution of micrometers and microseconds using a microscope.

View Article and Find Full Text PDF

Bio-orthogonal ligations that crosslink living cells with a substrate or other cells require high stability and rapid kinetics to maintain the nature of target cells. In this study, we report water-soluble cyclooctadiyne (WS-CODY) derivatives that undergo an ion-pair enhanced double-click reaction. The cationic side chain of WS-CODY accelerated the kinetics on the azide-modified cell surface due to proximity effect.

View Article and Find Full Text PDF

Spatially controlled self-organization represents a major challenge for organoid engineering. We have developed a mechanically patterned hydrogel for controlling self-condensation process to generate multi-cellular organoids. We first found that local stiffening with intrinsic mechanical gradient ( > 0.

View Article and Find Full Text PDF

Cell-coupled field-effect transistor (FET) biosensors have attracted considerable attention because of their high sensitivity to biomolecules. The use of insect cells (Sf21) as a core sensor element is advantageous due to their stable adhesion to sensors at room temperature. Although visualization of the insect cell-substrate interface leads to logical amplification of signals, the spatiotemporal processes at the interfaces have not yet been elucidated.

View Article and Find Full Text PDF

Objectives: Synovial mesenchymal stem cells (MSCs) have high freeze-thaw tolerance, whereas human umbilical vein endothelial cells (HUVECs) have low freezing tolerance. The differences in cell type-specific freeze-thaw tolerance and the mechanisms involved are unclear. This study thus aimed to identify the biological and physical factors involved in the differences in freeze-thaw tolerance between MSCs and HUVECs.

View Article and Find Full Text PDF

The cerebellum, a brain region with a high degree of plasticity, is pivotal in motor control, learning, and cognition. The cerebellar reserve is the capacity of the cerebellum to respond and adapt to various disorders via resilience and reversibility. Although structural and functional recovery has been reported in mammals and has attracted attention regarding treatments for cerebellar dysfunction, such as spinocerebellar degeneration, the regulatory mechanisms of the cerebellar reserve are largely unidentified, particularly at the circuit level.

View Article and Find Full Text PDF

Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing.

View Article and Find Full Text PDF

Over the past 30 years, research of green tea polyphenols, especially (-)-epigallocatechin gallate (EGCG), has revealed that consumption of green tea is a practical and effective primary cancer prevention method for the general population. More recently, we believe that green tea polyphenols are beneficial for tertiary cancer prevention using green tea alone or combined with anticancer drugs because EGCG has the potential to inhibit metastatic progression and stemness, and enhance antitumor immunity. In an effort to identify a common underlying mechanism responsible for EGCG's multifunctional effects on various molecular targets, we studied the biophysical effects of EGCG on cell stiffness using atomic force microscopy.

View Article and Find Full Text PDF

It is known that interfaces have various impacts on crystallization from a solution. Here, we describe crystallization of acetaminophen using a microflow channel, in which two liquids meet and form a liquid-liquid interface due to laminar flow, resulting in uniform mixing of solvents on the molecular scale. In the anti-solvent method, the microflow mixing promoted the crystallization more than bulk mixing.

View Article and Find Full Text PDF

Programmable cell adhesion with DNA hybridization is a promising approach for fabricating various tissue architectures without sophisticated instrumentation. However, little is known about how this artificial interaction influences the binding of cell adhesion proteins, E-cadherin. In this work, we designed a planar and fluid lipid membrane displaying E-cadherin and/or single-strand DNA with well-defined densities.

View Article and Find Full Text PDF

We have succeeded in label-free visualization of spatiotemporal dynamics of laser-induced crystal precursors in aqueous solutions. The tracking-free evaluation of the diffusion-coefficient field for the observation domain with tens of micrometers on a side from microscopy movie data is realized by particle image diffusometry (PID). PID revealed the time fluctuation of coverage composition with the nonuniform space distribution of diffusion coefficients by the prenucleation clusters.

View Article and Find Full Text PDF