Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the extensive investigation of biosynthetic pathway of the active compounds ginsenosides, our current understanding of the metabolic interlink between ginsenosides synthesis and primary metabolism at the whole-plant level. In this study, the tissue-specific profiling of primary and the secondary metabolites in two different species of ginseng were investigated by gas chromatography- and liquid chromatography coupled to mass spectrometry. A complex continuous coordination of primary- and secondary-metabolic network was modulated by tissues and species factors during growth. The results showed that altogether 149 primary compounds and 10 ginsenosides were identified from main roots, lateral roots, stems, petioles and leaves in P. ginseng and P. quinquefolius. The partial least squares-discriminate analysis (PLS-DA) revealed obvious compounds distinction among tissue-specific districts relative to species. To survey the dedication of carbon and nitrogen metabolism in different tissues to the accumulation of ginsenosides, we inspected the tissue-specific metabolic changes. Our study testified that the ginsenosides content was dependent on main roots and lateral roots energy metabolism, whereas independent of leaves and petiole photosynthesis during ginsenosides accumulation. When tow species were compared, the results indicated that high rates of C assimilation to C accumulation are closely associated with ginsenosides accumulation in P. ginseng main roots and P. quinquefolius lateral roots, respectively. Taken together, our results suggest that tissue-specific metabolites profiling dynamically changed in process of ginsenosides biosynthesis, which may offer a new train of thoughts to the mechanisms of the ginsenosides biosynthesis at the metabolite level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2016.12.026DOI Listing

Publication Analysis

Top Keywords

ginsenosides accumulation
12
main roots
12
lateral roots
12
ginsenosides
10
panax ginseng
8
ginseng panax
8
panax quinquefolius
8
compounds ginsenosides
8
roots lateral
8
ginsenosides biosynthesis
8

Similar Publications

Introduction: Prostate cancer (PC), the most common male genitourinary malignancy and second leading cause of global cancer deaths in men, frequently progresses to lethal castration-resistant PC (CRPC). Ginsenoside Rh2 (GRh2), a ginseng-derived bioactive compound, exhibits antitumor potential, but its efficacy and mechanisms in PC remain unclear.

Methods: PC3 cells were treated with GRh2 to assess proliferation (IC50 calculation), migration, and invasion.

View Article and Find Full Text PDF

Introduction: Ginseng ( C. A. Meyer) is a widely cultivated medicinal plant valued for its bioactive ginsenosides, which are influenced by soil conditions and microbial interactions.

View Article and Find Full Text PDF

Cerebral edema is characterized by fluid accumulation, and the glymphatic system (GS) plays a pivotal role in regulating fluid transport. Using the Tenecteplase system, magnesium salt of salvianolic acid B/ginsenoside Rg1 (SalB/Rg1) was injected intravenously into mice 4.5 h after middle cerebral artery occlusion and once every 24 h for the following 72 h.

View Article and Find Full Text PDF

Background: Panax ginseng is a perennial plant valued for its medicinal and nutritional properties. Its fruit contains a variety of bioactive compounds such as ginsenosides, flavonoids, phenolic acids, and anthocyanins. However, the regulatory mechanisms underlying the accumulation of these compounds during fruit development remain largely unexplored.

View Article and Find Full Text PDF

Background: Aging is a complex and inevitable biological process that involves the decline of function in multiple systems and organs, and it is possible to delay aging process and improve health conditions through diet. Ginsenosides, the major active compounds in Meyer, exhibit anti-oxidant, anti-cancer, and anti-aging properties. However, the relationship between bioactivities and structures of ginsenoside derivatives with same molecular formula remain unclear.

View Article and Find Full Text PDF