98%
921
2 minutes
20
A novel (CdS-Mn/MoS/CdTe)-sensitized TiO nanotube arrays (NTAs) photoelectrode has been prepared by electrodeposite, successive ionic layer adsorption and reaction (SILAR) coupled with hydrothermal method. When a ZnS layer was added on the top of CdS-Mn/MoS/CdTe/TiO, a notable red-shift and high absorption was observed in the visible light region. The photocurrent density (mA/cm) systematically increases from TiO NTAs (0.43), CdTe/TiO (1.09), MoS/CdTe/TiO (1.80), CdS-Mn/MoS/CdTe/TiO (2.40), to ZnS/CdS-Mn/MoS/CdTe/TiO (3.41) under visible light irradiation, due to the type-II semiconductor heterostructures comprising multiple components with a staggered band offset. Such a heterostructure possesses an enhanced photocatalytic performance towards degradation of organic contaminant, e.g. P-Nitrophenol (PNP) and Rhodamine B (RhB).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2016.09.048 | DOI Listing |
J Phys Chem Lett
September 2025
Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.
Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.
A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China. Electronic address:
Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2025
University of Belgrade - Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia.
In this work, TiO anatase nanotubes (NTs) were synthesized using a straightforward, two-step anodic oxidation method. To tackle with the optical and electrical properties of the material, a thin layer of tantalum was sputtered onto the nanotube surface. The microstructure of the modified material was analyzed using scanning and transmission electron microscopy (SEM and TEM), while changes in chemical bonding were examined by utilizing X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFNanoscale
August 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, PR China.
Due to their outstanding physicochemical properties, carbon nanotubes (CNTs) have been widely studied and applied in the nanoscience and nanotechnology fields. Herein, Fe-based catalysts were prepared by the impregnation method using AlO, SiO, ZrO, TiO and SnO supports and were used for CNT synthesis from -hexane under different reaction times and temperatures. It was found that the metal-support interaction and FeO particle size of Fe-based catalysts regulated CNT growth.
View Article and Find Full Text PDF