98%
921
2 minutes
20
In this work, TiO anatase nanotubes (NTs) were synthesized using a straightforward, two-step anodic oxidation method. To tackle with the optical and electrical properties of the material, a thin layer of tantalum was sputtered onto the nanotube surface. The microstructure of the modified material was analyzed using scanning and transmission electron microscopy (SEM and TEM), while changes in chemical bonding were examined by utilizing X-ray photoelectron spectroscopy (XPS). Structural analysis found the formation of the β-TaO phase on the surface of the deposited TiO NTs. Electrical resistivity, measured with the 4-point probe technique, showed a reduction in resistivity for the modified material, implying an increase in conductivity. Diffuse reflectance spectroscopy (DRS) showed an increase in the energy gap from 3.05 eV to 3.85 eV, while photoluminescence (PL) spectra revealed a suppression of deep-level trap states within the bandgap for modified NTs. These results indicate that increased conductivity can most probably be attributed to the reduction of Ti to Ti, modification of surface oxygen states and suppression of deep-level trap states within the bandgap for Ta deposited nanotubes. Electrochemical tests further revealed improved capacity for Li-ion intercalation, as well as coulombic efficiency, particularly at elevated temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cp01788b | DOI Listing |
Mil Med
September 2025
School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
Introduction: Submarine environments pose unique challenges to maintaining physical activity and exercise routines due to confined spaces, demanding schedules, and limited resources. This study investigated submariners' physical activity patterns, sleep quality, and perceived exercise barriers in both land- and sea-based settings, with the goal of informing targeted health interventions.
Materials And Methods: Ethics approval was granted by the Defence Science and Technology Group and Edith Cowan University review panels.
Environ Sci Pollut Res Int
September 2025
Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
Concrete production significantly contributes to CO emissions and depletion of natural resources, leading to substantial environmental concerns. The integration of polymers into concrete has emerged as a promising innovative solution aimed at overcoming inherent limitations of traditional concrete, including brittleness, susceptibility to tracking, environmental degradation, and substantial ecological impacts. This systematic review thoroughly investigates the properties, sustainability implications, and practical challenges associated with polymer-based concrete (PBC), particularly focusing on polymer concrete composites (PCC) and polymer-modified concrete (PMC) detailing their composition, mechanical behavior, and durability.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
September 2025
Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Nursing, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne,
Purpose: This study examined head and neck cancer treatment outcome priorities in patients with human papillomavirus-associated oropharyngeal cancer (HPVOPC) before and 12 months (12m) after (chemo)radiotherapy ([C]RT).
Methods And Materials: Eligible patients were diagnosed with HPVOPC suitable for curative-intent primary [C]RT. Study data included responses to a modified version of the Chicago Priorities Scale (CPS-modified) and select items from the MDASI Head and Neck Cancer Module (MDASI-HN).
Int J Biol Macromol
September 2025
Department of Design and Merchandising, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
Development on sustainable and inexpensive polymer fibers with high mechanical and water resistance properties has garnered significant attention in infrastructure application. Herein, lignin nanoparticles (LNP) were used as a modifier, boron nitride nanosheets (BNNS)@hyperbranched polylysine (HBPL) obtained were regarded as the cooperative modifier, and then polyvinyl alcohol (PVA)/LNP/BNNS@HBPL composite fibers were fabricated successfully by wet and dry spinning. Vast free hydrophilic hydroxyl groups in PVA decreased due to hydrogen bonding interactions among LNP, BNNS@HBPL, and PVA, thereby attenuating intramolecular and intermolecular hydrogen bonding within PVA.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
State Key Laboratory of Advanced Paper making and Paper-based Materials, South China University of Technology, Guangzhou, Guangdong Province, 510640, PR China.
Developing MXene-based electromagnetic interference (EMI) shielding composite films with exceptional wet mechanical properties is crucial to address the limitation of conventional MXene-based EMI shielding composite films in humid environments. Herein, we present a fabrication strategy for Janus-structured MXene-based EMI shielding composite films with exceptional wet mechanical and Joule heating performances. Through depositing tannic acid-modified MXene (TM) on maleic anhydride-modified lignin-containing cellulose nanofibril (MLCNF) film using a scalable vacuum filtration and hot-pressing strategy.
View Article and Find Full Text PDF