Enhanced charge separation of rutile TiO2 nanorods by trapping holes and transferring electrons for efficient cocatalyst-free photocatalytic conversion of CO2 to fuels.

Chem Commun (Camb)

Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China.

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modification with chloride and phosphate anions, and coupling with carbon nanotubes could effectively trap holes and transfer the electrons of rutile nanorods, respectively, so as to greatly promote photogenerated charge separation, leading to an obviously-improved cocatalyst-free photocatalytic conversion of CO2 to CH4 and CO, along with the positive effects of constructed phosphate bridges.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cc00772dDOI Listing

Publication Analysis

Top Keywords

charge separation
8
cocatalyst-free photocatalytic
8
photocatalytic conversion
8
conversion co2
8
enhanced charge
4
separation rutile
4
rutile tio2
4
tio2 nanorods
4
nanorods trapping
4
trapping holes
4

Similar Publications

The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

A dual-engineered covalent organic framework with charge-oxygen synergy promotes photocatalytic dipolar [3 + 2] cycloaddition.

Chem Sci

August 2025

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China

The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.

View Article and Find Full Text PDF

An electrostatic linear ion trap (ELIT) is used to trap ions between two ion mirrors with image current detection by central detection electrode. Transformation of the time-domain signal to the frequency-domain via Fourier transform (FT) yields an ion frequency spectrum that can be converted to a mass-to-charge scale. Injection of ions into an ELIT from an external ion source leads to a time-of-flight ion separation that ultimately determines the range of over which ions can be collected from a given ion injection step.

View Article and Find Full Text PDF

This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.

View Article and Find Full Text PDF