Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bone remodeling is a vital physiological process of healthy bone tissue in humans. It is characterized by the formation of bone by osteoblasts and its resorption by osteoclasts, and the bone resorbed by osteoclasts is replaced through the differentiation and activity of osteoblasts. Imbalances in this vital process lead to pathological conditions, including osteoporosis. Intermedin (IMD) as a newly discovered peptide in the calcitonin (CT) family of peptides, which shares similar functions with CT, calcitonin gene‑related peptide and amylin in bone resorption. However, the mechanism underlying its effect remains to be elucidated. This was investigated in the present study using the osteoblastic MC3T3‑E1 cell line, which was treated with different doses of IMD (0, 1, 10 and 100 nM). Cell proliferation, apoptosis and the expression of receptor activator of NF‑κB ligand (RANKL), osteoprotegerin (OPG) and macrophage colony‑stimulating factor (M‑CSF) were measured following treatment using multiple detection techniques, including an MTT assay, flow cytometry, reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The resulting data demonstrated that IMD significantly inhibited the apoptosis of MC3T3‑E1 cells induced by serum‑free culture and dexamethasone, however, no significant effects on MC3T3‑E1 cell proliferation were observed. IMD had additional functions on the MC3T3‑E1 cells, including inhibition of the expression of RANKL and M‑CSF, and promotion of the expression of OPG. Previous studies have also demonstrated that RANKL and M‑CSF are two vital factor produced by osteoblasts to promote the maturation and differentiation of osteoclasts, and it has been reported that IMD can inhibit the osteoclast formation stimulated by RANKL and M‑CSF. Together with these findings, the present study concluded that IMD reduces bone resorption by inhibiting osteoblast apoptosis, decreasing the RANKL/OPG ratio and the expression of M-CSF, and inhibiting osteoclast maturation and differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626169PMC
http://dx.doi.org/10.3892/mmr.2015.4328DOI Listing

Publication Analysis

Top Keywords

rankl m‑csf
12
proliferation apoptosis
8
apoptosis expression
8
bone resorption
8
mc3t3‑e1 cell
8
cell proliferation
8
mc3t3‑e1 cells
8
maturation differentiation
8
bone
6
imd
6

Similar Publications

Fisetin modulates fluoride induced osteochondral toxicity in zebrafish larvae.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India. Electronic address:

Excessive fluoride (F) exposure, particularly during early development, poses a significant risk to skeletal integrity by disrupting bone homeostasis through oxidative stress and altered mineralization. While F induced oxidative stress is well documented, studies investigating the role of natural antioxidants in mitigating F induced osteochondral toxicity remains limited. Hence, the present study investigated the osteomodulatory effect of fisetin (Fis) against F toxicity in zebrafish larvae.

View Article and Find Full Text PDF

Lycii fructus (LF) is widely used in traditional Asian medicine and as a dietary supplement due to its potential health benefits. Zeaxanthin (ZEA), a key carotenoid in LF, is crucial in supporting eye health. However, the effects of LF and ZEA on receptor activator of NF-kappaB Ligand (RANKL)-mediated osteoclast differentiation were not confirmed.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) remains a formidable clinical challenge due to its high relapse rate and resistance to existing therapies. Estrogen-related receptor gamma (ERRγ), a nuclear receptor critical for cellular energy metabolism, has been implicated in various cancers. but its role in MM remains unclear.

View Article and Find Full Text PDF

Background: Musculoskeletal diseases (MSDs) are a common group of conditions involving bones, muscles, cartilage, ligaments, and nerves, which significantly impact patients' quality of life and ability to participate in society. Anthocyanins (ACNs), as phytochemicals, possess various pharmacological and biological activities, including anti-apoptotic, antioxidant, anti-inflammatory, and immunosuppressive properties. In recent years, ACNs have shown remarkable potential in improving MSDs.

View Article and Find Full Text PDF

Dimethyl fumarate mitigates osteoarthritis progression through Nrf2 activation-mediated suppression of oxidative stress and subchondral osteoclastogenesis.

Int Immunopharmacol

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China. Electronic address:

Osteoarthritis (OA) is a degenerative joint disease associated with imbalanced subchondral bone remodeling, and there is currently no curative treatment available. In OA, excessive osteoclast activity leads to bone loss and inflammatory responses. Dimethyl fumarate (DMF), an Nrf2 activator already used in treating psoriasis and multiple sclerosis, may alleviate OA by suppressing oxidative stress and osteoclastogenesis.

View Article and Find Full Text PDF