The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice.

Plant Cell Environ

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The intracellular potassium (K(+) ) homeostasis, which is crucial for plant survival in saline environments, is modulated by K(+) channels and transporters. Some members of the high-affinity K(+) transporter (HAK) family are believed to function in the regulation of plant salt tolerance, but the physiological mechanisms remain unclear. Here, we report a significant inducement of OsHAK21 expression by high-salinity treatment and provide genetic evidence of the involvement of OsHAK21 in rice salt tolerance. Disruption of OsHAK21 rendered plants sensitive to salt stress. Compared with the wild type, oshak21 accumulated less K(+) and considerably more Na(+) in both shoots and roots, and had a significantly lower K(+) net uptake rate but higher Na(+) uptake rate. Our analyses of subcellular localizations and expression patterns showed that OsHAK21 was localized in the plasma membrane and expressed in xylem parenchyma and individual endodermal cells (putative passage cells). Further functional characterizations of OsHAK21 in K(+) uptake-deficient yeast and Arabidopsis revealed that OsHAK21 possesses K(+) transporter activity. These results demonstrate that OsHAK21 may mediate K(+) absorption by the plasma membrane and play crucial roles in the maintenance of the Na(+) /K(+) homeostasis in rice under salt stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12586DOI Listing

Publication Analysis

Top Keywords

salt stress
12
oshak21
9
salt tolerance
8
rice salt
8
uptake rate
8
plasma membrane
8
salt
5
potassium transporter
4
transporter oshak21
4
oshak21 functions
4

Similar Publications

Soil contamination with salinity and heavy metals such as cadmium (Cd) is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizobacteria PGPR and organic agents such as salicylic acid (SA) are considered major protectants to alleviate abiotic stresses, the study of these bacteria and organic acids to ameliorate the toxic effects of salinity and Cd remains limited. Therefore, the present study was conducted to investigate the individual and combined effects of PGPR and SA on enhancing the phytoremediation of salinity (100 mM NaCl) and Cd (50 µM CdCl₂) using rice ( L.

View Article and Find Full Text PDF

Omics Insights Into the Effects of Highbush Blueberry and Cranberry Crop Agroecosystems on Honey Bee Health and Physiology.

Proteomics

September 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.

Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.

View Article and Find Full Text PDF

Hybrid epigenome unveils parental genetic divergence shaping salt-tolerant heterosis in Brassica napus.

New Phytol

September 2025

National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.

View Article and Find Full Text PDF

LlLRP1, an SHI/SRS transcription factor, mediates bulbil formation in Lilium lancifolium via regulation by LlWOX11 and response to NaCl stress.

Int J Biol Macromol

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, Yunnan, 650224, China. Electronic address: mingju

Bulbil formation in Lilium lancifolium represents a pivotal vegetative reproduction strategy, yet the transcriptional regulatory network governing this process remains largely uncharacterized. Here, we identify LlLRP1 by full-length cloning, sequence analysis and subcellular localization, an SHI/SRS family transcription factor, as a key mediator of bulbil morphogenesis. Transcriptomic profiling revealed that LlLRP1 is a downstream target of LlWOX11, with its promoter harboring conserved binding motifs (AAAG, AGTA) validated by yeast one-hybrid, dual-luciferase reporter, and electrophoretic mobility shift assays.

View Article and Find Full Text PDF