98%
921
2 minutes
20
GIT1 is an ArfGAP and scaffolding protein regulating cell adhesion and migration. The multidomain structure of GIT1 allows the interaction with several partners. Binding of GIT1 to some of its partners requires activation of the GIT1 polypeptide. Our previous studies indicated that binding of paxillin to GIT1 is enhanced by release of an intramolecular interaction between the amino-terminal and carboxy-terminal portions that keeps the protein in a binding-incompetent state. Here we have addressed the mechanism mediating this intramolecular inhibitory mechanism by testing the effects of the mutation of several formerly identified GIT1 phosphorylation sites on the binding to paxillin. We have identified two tyrosines at positions 246 and 293 of the human GIT1 polypeptide that are needed to keep the protein in the inactive conformation. Interestingly, mutation of these residues to phenylalanine did not affect binding to paxillin, while mutation to either alanine or glutamic acid enhanced binding to paxillin, without affecting the constitutive binding to the Rac/Cdc42 exchange factor βPIX. The involvement of the two tyrosine residues in the intramolecular interaction was supported by reconstitution experiments showing that these residues are important for the binding between the amino-terminal fragment and carboxy-terminal portions of GIT1. Either GIT1 or GIT1-N tyrosine phosphorylation by Src and pervanadate treatment to inhibit protein tyrosine phosphatases did not affect the intramolecular binding between the amino- and carboxy-terminal fragments, nor the binding of GIT1 to paxillin. Mutations increasing the binding of GIT1 to paxillin positively affected cell motility, measured both by transwell migration and wound healing assays. Altogether these results show that tyrosines 246 and 293 of GIT1 are required for the intramolecular inhibitory mechanism that prevents the binding of GIT1 to paxillin. The data also suggest that tyrosine phosphorylation may not be sufficient to release the intramolecular interaction that keeps GIT1 in the inactive conformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974724 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093199 | PLOS |
JACS Au
July 2025
State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.
Discovery of cyclic peptide hits using DNA-encoded libraries (DELs) has recently been extensively researched, with significant efforts directed toward developing DEL-compatible macrocyclization methods. To investigate how different cyclic linkers influence DEL selection outcomes, we constructed eight distinct sublibraries and screened them against two protein targets, MDM2 and GIT1, resulting in two representative yet contrasting scenarios. Validation studies for MDM2 revealed that structural similarity patterns observed across multiple sublibraries could enhance confidence in the authenticity of identified hits.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA.
The GPCR-like protein Smoothened (Smo) plays a pivotal role in the Hedgehog (Hh) pathway. To initiate Hh signaling, active Smo binds to and inhibits the catalytic subunit of PKA in the primary cilium, a process facilitated by G protein-coupled receptor kinase 2 (Grk2). However, the precise regulatory mechanisms underlying this process, as well as the events preceding and following Smo activation, remain poorly understood.
View Article and Find Full Text PDFDrug Des Devel Ther
July 2024
Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, People's Republic of China.
Background And Objective: GIT1 (G-protein-coupled receptor kinase interacting protein-1) has been found to be highly related with cancer cell invasion and metastasis in many cancer types. β-Pix (p21-activated kinase-interacting exchange factor) is one of the proteins that interact with GIT1. Targeting GIT1/β-Pix complex might be a potential therapeutic strategy for interfering cancer metastasis.
View Article and Find Full Text PDFZhonghua Zhong Liu Za Zhi
July 2024
Departemnt of Otolaryngology, the Fourth Central Hospital of Tianjin, Tianjin 300140, China.
To investigate the influence of circ_BACH2 on the malignant biological behavior of papillary thyroid cancer and its molecular mechanism. Cancer tissues and paracancer tissues of 51 patients with papillary thyroid carcinoma from the Fourth Central Hospital of Tianjin between 2017 and 2019 were collected. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of circ_BACH2, miR-370-3p and G protein coupled receptor kinase interacting factor 1 (GIT1) mRNA in tissues and cells; flow cytometry to detect cell apoptosis and cell cycle; plate clone formation experiment to detect the number of cell clones; cell counting kit 8 (CCK-8) to detect cell proliferation; Transwell array to detect cell migration and invasion; western blot to detect protein expressions; dual luciferase report experiment to detect the targeting relationship between circ_BACH2, miR-370-3p and GIT1; the nude mouse tumor formation experiment to detect the effect of circ_BACH2 on tumors in mice.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2022
Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina.
Previous studies have demonstrated that G protein-coupled receptor kinase interacting-1 protein (GIT1) associates with endothelial nitric oxide synthase (eNOS) to regulate nitric oxide production in sinusoidal endothelial cells (SECs). Here, we hypothesized that GIT1's tightly associated binding partner, β-PIX (p21-activated kinase-interacting exchange factor β, ARHGEF7) is specifically important in the regulation of eNOS activity. We examined β-PIX expression in normal rat liver by immunohistochemistry and explored β-PIX protein-protein interactions using immunoprecipitation and immunoblotting.
View Article and Find Full Text PDF