98%
921
2 minutes
20
A unique pH-driven Förster resonance energy transfer (FRET) based biosensor emission by a pyrazoline-doxorubicin pair has been deciphered with a bioimaging application in a live HepG2 cell whereas conformational switching of both molecules at elevated pH reveals a fascinating twist (FRET-OFF) via strong fluorescent exciplex formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp54527j | DOI Listing |
Anal Chem
September 2025
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.
View Article and Find Full Text PDFACS Sens
September 2025
Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by cognitive decline and behavioral impairments, typically manifesting in the elderly and presenile population. With the rapid global aging trend, early diagnosis and treatment of AD have become increasingly urgent research priorities. The primary pathological features of AD include excessive accumulation of β-amyloid (Aβ) plaques, the formation of neurofibrillary tangles, and neuronal loss.
View Article and Find Full Text PDFNat Photonics
June 2025
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Ginseng exosomes are a kind of promising extracellular vesicle containing unique bioactive components. However, the investigation on ginseng-derived exosomes is still in the initial stage. This study developed a photonic crystal-based Bragg scattering coupling electrochemiluminescence (BSC-ECL) biosensor for detection of miRNA396a-3p in exosome-like nanoparticles (GENs) and ginseng exosomes (Gexos).
View Article and Find Full Text PDFMikrochim Acta
September 2025
Henan Agricultural University, Zhengzhou, 450002, China.
A dual-mode aptasensor was engineered for aflatoxin B (AFB) detection by functional integration of peroxidase-mimetic Au@CeO core-shell nanostructures with emissive carbon dots (CDs). The Au@CeO nanocomposite, synthesized via spontaneous redox reaction, exhibited enhanced peroxidase-like activity due to abundant Ce/oxygen vacancies facilitating hydroxyl radical generation. The aptasensor utilizes a competitive binding mechanism, where AFB competed with immobilized Au@CeO-CDs-Apt1 probes for binding sites, resulting in inversely proportional colorimetric and fluorescent signals.
View Article and Find Full Text PDF