Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment.

Oncoimmunology

Cancer Immunology Research Program; Sir Peter MacCallum Department of Oncology; University of Melbourne; Parkville, VIC Australia ; Department of Immunology; Monash University; Prahran, VIC Australia.

Published: September 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tumor microenvironment is a complex assortment of cells that includes a variety of leukocytes. The overall effect of the microenvironment is to support the growth of tumors and suppress immune responses. Immunotherapy is a highly promising form of cancer treatment, but its efficacy can be severely compromised by an immunosuppressive tumor microenvironment. Chemotherapy and radiation treatment can mediate tumor reduction through cytotoxic effects, but it is becoming increasingly clear that these forms of treatment can be used to modify the tumor microenvironment to liberate tumor antigens and decrease immunosuppression. Chemotherapy and radiotherapy can be used to modulate the tumor microenvironment to enhance immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850060PMC
http://dx.doi.org/10.4161/onci.25962DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
20
chemotherapy radiation
8
modify tumor
8
tumor
7
microenvironment
6
enhancing immunotherapy
4
immunotherapy chemotherapy
4
radiation modify
4
microenvironment tumor
4
microenvironment complex
4

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

The effect of CD40 agonist antibody therapy on the pancreatic cancer microenvironment.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.

The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Immunogenic cell death (ICD) is a type of cell death sparking adaptive immune responses that can reshape the tumor microenvironment. Exploring key ICD-related genes in bladder cancer (BLCA) could enhance personalized treatment. The Cancer Genome Atlas (TCGA) BLCA patients were divided into two ICD subtypes: ICD-high and ICD-low.

View Article and Find Full Text PDF

Despite recent progress within the field of immuno-oncology, immune suppression in the tumor microenvironment, defective antigen presentation, and low levels of tumor-specific T cells are key limitations of current cancer immunotherapies. CD40-targeting immunotherapies hold promises for addressing these limitations across solid tumors. Here, we describe ATOR-4066, a bispecific antibody that targets CD40 and CEACAM5 developed for immunotherapy of cancer using the Neo-X-Prime platform.

View Article and Find Full Text PDF