Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-009-1611-5DOI Listing

Publication Analysis

Top Keywords

solid dispersion
28
sodium lauryl
12
lauryl sulfate
12
solid
9
tacrolimus-loaded solid
8
solid dispersions
8
water sodium
8
sulfate citric
8
citric acid
8
scanning electron
8

Similar Publications

Kinetic and Mechanistic Discrepancies of Single/Dual-Atom Nanozymes Drive a Triple-Channel Sensing Array for Machine Learning-Assisted Antioxidant Discrimination.

Anal Chem

September 2025

Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.

Current colorimetric sensing arrays for antioxidant detection often struggle with discrimination due to cross-reactive signals from individual nanozymes. These signals are typically modulated by external factors such as pH or chromogenic substrates, offering limited kinetic and mechanistic diversity. To overcome this, we present a novel triple-channel colorimetric sensing array utilizing two distinct single-atom nanozymes (Cu SA and Fe SA) and one dual-atom nanozyme (CuFe DA).

View Article and Find Full Text PDF

Environmentally friendly food packaging has emerged as a viable strategy to replace traditional plastic films. In this study, eugenol Pickering emulsion was constructed with konjac glucomannan (KGM) and tragacanth gum (GT) as stabilizers, and was introduced into the KGM/chitosan (CS) composite film by electrostatic action to develop a new type of active packaging film. Interfacial characterization revealed optimal emulsion stability at a 1:5 KGM-to-GT mass ratio.

View Article and Find Full Text PDF

Sulforaphene (SFE) is a bioactive isothiocyanate, known for its cancer-preventive, anti-inflammatory, and antioxidant properties. However, the application of SFE is severely limited by its poor stability. Hydroxypropyl methylcellulose (HPMC), an amphiphilic carbohydrate polymer, has potentials to enhance the stability of SFE and the loading capacity.

View Article and Find Full Text PDF

Active films displayed substantial prospects to maintain quality of tropical fruits during storage and transportation. This study developed multifunctional composite films loaded with melatonin/carvacrol nanoemulsions (MCNE) in guar gum/pullulan polysaccharide (GP) matrixes. The SEM analysis showed that MCNE was uniformly dispersed in GP film matrixes, and formed dense and continuous phase structure.

View Article and Find Full Text PDF

Photochemical behavior of colloidal lignin particles under controlled UV exposure: Balancing self-stabilization and degradation.

Int J Biol Macromol

September 2025

"Materials + Technologies" Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain. Electronic address:

Colloidal Lignin Particles (CLPs), with their polyphenolic structure, are promising sustainable alternatives to chemical UV filters. This study investigates the photochemical behavior of CLPs under ultraviolet irradiation synthetized from five different technical raw lignins (Alkali, Organosolv, two Enzymatic Hydrolyzed and Softwood Kraft Lignin) via solvent-shift procedure. The suspensions were irradiated using a self-developed UV-pen set-up and a commercially available UV chamber, enabling controlled UV exposure over time.

View Article and Find Full Text PDF