Publications by authors named "Ziyong Chen"

A series of alkynylplatinum(II) complexes with 2,6-di(pyrid-2-yl)pyrazine ligand has been synthesized and characterized. Interestingly, the complexes have been found to exhibit unprecedented thermochromic behavior with absorption maxima shifting to the longer-wavelength region upon increasing temperature. This phenomenon is significantly different from that in conventional platinum(II) systems, where an elevated temperature typically promotes the dissociation of aggregates and diminishes MMLCT absorptions.

View Article and Find Full Text PDF

Introduction: Syndecan-1 is one of cell surface proteoglycans that mediates the connection between cytoskeleton and interstitial matrix. The previous studies have demonstrated that syndecan-1 exerts an essential role in several pulmonary diseases. However, there are few researches about the relation of serum syndecan-1 with corona virus disease 2019 (COVID-19).

View Article and Find Full Text PDF

Site-specific bioconjugation techniques are extensively utilized in biological and biomedical fields to precisely label biomolecules with luminescent tags for direct visualization of their intracellular dynamics or with cytotoxic agents for the development of novel anticancer therapeutics. In this work, a series of cyclometalated iridium-(III) polypyridine complexes featuring a thioester moiety was designed as novel phosphorogenic probes for labeling N-terminal cysteine (N-Cys)-containing biomolecules. These thioester complexes were weakly emissive in solutions due to the presence of a low-lying nonradiative distorted triplet intraligand (IL) state localized on the thioester unit, as elucidated by computational analyses.

View Article and Find Full Text PDF

A series of platinum(II) complexes incorporating a histidine moiety and/or positively charged group has been designed and synthesized to explore the specific binding between platinum(II) complexes and the analyte and their sensing ability. The specific hydrogen bonding between the histidine moiety and sialic acids, and the electrostatic interaction between the positively charged trimethylammonium group of the platinum(II) complexes and negatively charged carboxylate groups of sialic acids have been found to enhance the binding affinity. The supramolecular assembly of platinum(II) complexes upon binding to sialic acids induces remarkable luminescence changes due to noncovalent Pt(II)Pt(II) and π-π stacking interactions, achieving sensing and visualization of sialic acids.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) has a higher morbidity and poor prognosis. Gui-Zhi-Fu-Ling-Wan (GFW) is a traditional Chinese herbal formula which exerts anti-inflammatory and anti-oxidative effects. The goal was to determine the protective effect of GFW on bleomycin (BLM)-induced pulmonary fibrosis.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) and the very recently established thermally stimulated delayed phosphorescence (TSDP) are two promising approaches for enhancing the performance of organic light-emitting devices (OLEDs). Here, we have developed a new class of through-space charge transfer (TSCT) carbazolylgold(III) C^C^N complexes with unique TADF-TSDP properties by introducing a rigid arylamine on the carbazolyl auxiliary ligand. The highly twisted conformation between the C^C^N and carbazolyl ligands induces strong through-bond ligand-to-ligand charge transfer (TB-LLCT) character in their lowest singlet and triplet excited states, with small singlet-triplet energy gaps for efficient TADF.

View Article and Find Full Text PDF

Background: A number of studies have demonstrated that legumain is engaged in the pulmonary diseases. Nevertheless, the role of legumain is indistinct in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The aim is to identify the correlation of serum legumain with AECOPD patients through a prospective cohort study.

View Article and Find Full Text PDF

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have created decanuclear chiral gold(I) sulfido clusters (S-Au and R-Au) using specialized SDP ligands.
  • Mixing these chiral clusters in a 1:1 ratio yields an achiral heterodimer icosanuclear meso-cluster (meso-Au), which exhibits intense near-infrared luminescence with a peak at around 750 nm.
  • The study highlights the significant increase in photoluminescence quantum yield for meso-Au (25%) compared to the chiral clusters (8%), and shows that the clustering process is influenced by solvent polarity and diphosphine ligand configuration, aiding the understanding of self-sorting in chiral assemblies.
View Article and Find Full Text PDF

Background: Leucine-rich α-2 glycoprotein 1 (LRG1) is associated with various inflammatory lung diseases. Nevertheless, the connection between LRG1 and adult community-acquired pneumonia (CAP) individuals was still not well understood. Through a prospective cohort study, the correlations of serum LRG1 with severity and prognosis were evaluated in CAP patients.

View Article and Find Full Text PDF

A unique class of tridentate diaryltriazine ligand-containing gold(III) complexes with thermally activated delayed fluorescence (TADF) and/or thermally stimulated delayed phosphorescence (TSDP) properties has been designed and synthesized. With a simple structural modification on the coordination of carbazole moiety in the monodentate ligand, a large spectral shift of ∼160 nm (ca. 4900 cm) spanning from sky blue to red emissions has been demonstrated in solid-state thin films.

View Article and Find Full Text PDF

Cross-linking strategies have found wide applications in chemical biology, enabling the labeling of biomolecules and monitoring of protein-protein interactions. Nitrone exhibits remarkable versatility and applicability in bioorthogonal labeling due to its high reactivity with strained alkynes via the strain-promoted alkyne-nitrone cycloaddition (SPANC) reaction. In this work, four cyclometalated iridium(III) polypyridine complexes functionalized with two nitrone units were designed as novel phosphorogenic bioorthogonal reagents for bioimaging and phototherapeutics.

View Article and Find Full Text PDF

Achieving both high efficiency and high stability in blue thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) is challenging for practical displays and lighting. Here, we have successfully developed a series of sky-blue to pure-blue emitting donor-acceptor (D-A) type TADF materials featuring a four-coordinated boron with 2,2'-(pyridine-2,6-diyl)diphenolate (dppy) ligands, 1-8. Synergistic engineering of substituents on the phenyl bridge as well as the electronic properties and the attached positions of heteroatom N-donors not only enables fine-tuning of the emission colors, but also modulates the nature and energies of their triplet excited states that are important for the reverse intersystem crossing (RISC).

View Article and Find Full Text PDF

A new class of amphiphilic tetradentate platinum(ii) Schiff base complexes has been designed and synthesized. The self-assembly properties by exploiting the potential Pt⋯Pt interactions of amphiphilic platinum(ii) Schiff base complexes in the solution state have been systematically investigated. The presence of Pt⋯Pt interactions has further been supported by computational studies and non-covalent interaction (NCI) analysis of the dimer of the complex.

View Article and Find Full Text PDF

Strained carbon nanohoops exhibit attractive photophysical properties due to their unique π-conjugated structure. However, incorporation of such nanohoops into the pincer ligand of metal complexes has rarely been explored. Herein, a new family of highly strained cyclometalated platinum(II) nanohoops has been synthesized and characterized.

View Article and Find Full Text PDF

In the present work, the hot deformation behavior and microstructural evolution of a TiB/Al-Zn-Mg-Cu-Zr composite were studied. Hot compression tests were conducted within a temperature range of 370 °C to 490 °C and a strain rate of 0.001 s to 10 s.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the value of apolipoproteins (ApoA1, ApoB) and their ratio in diagnosing COPD patients who also have acute lower respiratory tract infections.
  • Researchers analyzed data from 171 COPD patients with infections, 35 without, and 41 healthy controls to assess various factors' roles in this context.
  • The findings suggest that ApoA1 is particularly effective for predicting bacterial infections in COPD patients, with high sensitivity and specificity, especially when combined with neutrophil counts.
View Article and Find Full Text PDF

Due to the ubiquity of chirality in nature, chiral self-assembly involving self-sorting behaviors has remained as one of the most important research topics of interests. Herein, starting from a racemic mixture of SEG-based (SEG=SEGPHOS) chlorogold(I) precursors, a unique chiral butterfly-shape hexadecanuclear gold(I) cluster (Au ) with different ratios of R and S ligands is obtained via homoleptic and heterochiral self-sorting. More interestingly, by employing different chlorogold(I) precursors of opposite chirality (such as R -Au and S -Au (BIN=BINAP)), an unprecedented heteroleptic and heterochiral self-sorting strategy has been developed to give a series of heteroleptic chiral decanuclear gold(I) clusters (Au ) with propellor-shape structures.

View Article and Find Full Text PDF

Described here are sterically hindered tetradentate [Pt(O^N^C^N)] emitters (Pt-1, Pt-2, and Pt-3) developed for stable and high-performance green phosphorescent organic light-emitting diodes (OLEDs). These Pt(II) emitters exhibit strong saturated green phosphorescence (λ = 517-531 nm) in toluene and mCP thin films with emission quantum yields as high as 0.97, radiative rate constants (k) as high as 4.

View Article and Find Full Text PDF

We present a novel class of one-electron multi-channel molecular orbital images (MolOrbImages) designed for the prediction of excited-state energetics in conjunction with the state-of-the-art VGG-type machine-learning architecture. By representing hole and particle states in the excitation process as channels of MolOrbImages, the revised VGG model achieves excellent prediction accuracy for both low-lying singlet and triplet states, with mean absolute errors (MAEs) of <0.08 and <0.

View Article and Find Full Text PDF

Nanocrystalline (NC) structure can lead to the considerable strengthening of metals and alloys. Obtaining appropriate comprehensive mechanical properties is always the goal of metallic materials. Here, a nanostructured Al-Zn-Mg-Cu-Zr-Sc alloy was successfully processed by high-pressure torsion (HPT) followed by natural aging.

View Article and Find Full Text PDF

We present a general machine learning framework for probing the electronic state properties using the novel quantum descriptor MolOrbImage. Each pixel of the MolOrbImage records the quantum information generated by the integration of the physical operator with a pair of bra and ket molecular orbital (MO) states. Inspired by the success of deep convolutional neural networks (NNs) in computer vision, we have implemented the convolutional-layer-dominated MO-NN model.

View Article and Find Full Text PDF

Probing chemical bonding in molecules containing lanthanide elements is of theoretical interest, yet it is computationally challenging because of the large valence space, relativistic effects, and considerable electron correlation. We report a high-level ab initio study that quantifies the many-body nature of Ce-O bonding with the coordination environment of the Ce center and particularly the roles of the 4f orbitals. The growing significance of the overlap between Ce 4f and O 2p orbitals with the increasing coordination of Ce atoms enhances Ce-O bond covalency and in return directs the molecular geometry.

View Article and Find Full Text PDF

A multicore fiber Bragg grating (MC-FBG) array shape sensor is a powerful tool for a variety of applications. However, the efficient fabrication of high-quality MC-FBG arrays remains a problem. Here, we report for the first time, to the best of our knowledge, a new method of directly writing FBG arrays in a seven-core fiber (SCF) through the protective coating using femtosecond laser auto-positioning point-by-point technology, which is accomplished by image recognition and micro-displacement compensation.

View Article and Find Full Text PDF

The reflection spectra of conventional fiber Bragg gratings (FBGs) with uniform index modulation profiles typically have strong sidelobes, which hamper the performance of FBG-based optical filters, fiber lasers, and sensors. Here, we propose and demonstrate a femtosecond laser line-by-line (LbL) scanning technique for fabricating apodized FBGs with suppressed sidelobes. This approach can flexibly achieve various apodized modulation profiles via precise control over the length and/or transverse position of each laser-inscribed index modification track.

View Article and Find Full Text PDF