98%
921
2 minutes
20
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors. In contrast to the distorted [CAu] kernel of a pentanuclear HCGC compound [], its dimeric congener [] exhibits a symmetrical [{CAu}-Au-{CAu}] structure with a remarkable hypercarbon-to-Au electron donation. This unique arrangement results in a microsecond long metal-metal-to-ligand charge transfer excited state relative to the nanosecond intraligand excited state of []. Upon light irradiation at 560 nm, [] generates active O to oxidize glutathione (GSH) into poorly coordinating GSSG in the cytoplasm and finally promotes subcellular delivery of HCGCs to mitochondria. Moreover, GSH further triggers consecutive release of active [AuPPh] ions to inhibit cytoplasmic glutathione peroxidase GPX4 and mitochondrial thioredoxin reductase TrxR2, which collectively result in accelerated ferroptosis of human bladder cancer EJ cells and show excellent antitumor performance in mouse bladder tumor models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c15820 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Neuroscience, The Scripps Research Institute, San Diego, CA 92037.
Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA.
We previously demonstrated the CFTR correctors VX-445 (elexacaftor) and S-VX-121 (vanzacaftor) potentiate heterologously-expressed BK channels, as well as in primary human bronchial epithelial cells (HBEs). This potentiation of BK resulted in altered vasoreactivity and neuronal excitability. We postulated novel compounds could be identified that would potentiate BK while not affecting CFTR.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
September 2025
Ryazan State University named for S.A. Yesenin, Ryazan, Russia.
The ion-optical properties of the second stability region () formed by the square wave shape potential with a duty cycle of 50% are studied as applied to the operation of a linear ion trap. The stability diagram is presented in detail, the stability parameters and , which determine the spectrum of ion oscillations, are calculated; the pseudopotential well-depth for this zone is given. The LIT acceptances for sinusoidal and rectangular wave forms are shown for comparison.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
An improved rotational characterization of the E3Σ1+(63S1) Rydberg state of the CdAr diatom produced in a supersonic beam and studied using laser induced fluorescence (LIF) excitation spectra is presented. As an example, the spectra of the E3Σ1+←A3Π0+(53P1) transition, originating from the excitation of a single 116Cd40Ar isotopologue, are recorded and analyzed. In the experiment, the optical-optical double resonance method is employed, utilizing the E3Σ1+(υ')←A3Π0+(53P1)(υ″=6)←X1Σ0+(υ=0) scheme.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan.
Linear carbon cluster anions, such as C6-, have been considered to be promising candidate interstellar molecules. Recent experiments have demonstrated that in a collision-free vacuum environment, C6- exhibits fast radiative cooling from its highly vibrationally excited states through inverse internal conversion (IIC). Since IIC is driven by vibronic coupling, the understanding of vibronic structures of C6- is of theoretical significance.
View Article and Find Full Text PDF