A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Molecular Design and Synthetic Approaches for the Realization of Multichannel Radiative Decay Pathways in Gold(III) Complexes and Their Applications in Organic Light-Emitting Devices. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A unique class of tridentate diaryltriazine ligand-containing gold(III) complexes with thermally activated delayed fluorescence (TADF) and/or thermally stimulated delayed phosphorescence (TSDP) properties has been designed and synthesized. With a simple structural modification on the coordination of carbazole moiety in the monodentate ligand, a large spectral shift of ∼160 nm (ca. 4900 cm) spanning from sky blue to red emissions has been demonstrated in solid-state thin films. Three-state or four-state models have been employed in fitting the emission lifetimes of the gold(III) complexes at various temperatures. The findings clearly indicate the presence of three emitting states, S, T, and T', suggesting the coexistence of TADF, phosphorescence, and TSDP. Notably, a minor structural change in the donor moiety between phenylcarbazolyl and diphenylaminoaryl has been demonstrated to turn on/off the TSDP, resulting in TADF-TSDP-phosphorescence or TADF-phosphorescence emitters. The TADF and/or TSDP properties have also been supported by temperature-dependent ultrafast transient absorption studies, with the direct observation of reverse intersystem crossing (RISC) and reverse internal conversion (RIC) and the determination of the activation parameters and excited state dynamics. Solution-processed and vacuum-deposited organic light-emitting devices (OLEDs) have been prepared, in which sky blue emitting devices based on exhibit an operational lifetime LT ∼ 5 times longer than the previously reported sky blue emitting analogue that shows only TSDP property. These results have provided valuable insights into the manipulation of the excited states via rational molecular design toward the realization of gold(III)-based TSDP and/or TADF materials with multiple radiative decay pathways that show enhanced radiative decay rate constants () for practical OLED applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c09207DOI Listing

Publication Analysis

Top Keywords

radiative decay
12
goldiii complexes
12
sky blue
12
molecular design
8
decay pathways
8
organic light-emitting
8
light-emitting devices
8
tadf and/or
8
phosphorescence tsdp
8
tsdp properties
8

Similar Publications