Publications by authors named "Zixiang Yan"

Synergistic contagions are common in natural and social systems, with network topology playing a crucial role in shaping these dynamics. Despite extensive researches, a comprehensive understanding of how specific structural features influence synergistic contagions, especially their phase transitions, remains lacking. This study demonstrates that the spectral approach can serve as a high-precision analytical tool to describe the impact of network structure, particularly degree heterogeneity and degree correlations, on synergistic contagions.

View Article and Find Full Text PDF

We show with molecular dynamics simulations that spinodal decomposition is a probable initiation mechanism of spallation in impact-melted samples at extremely high strain rates. The formation of voids or bubbles is a secondary process following the spinodal amplification of density fluctuations. As a result, the spallation strength can be related to the inherent thermodynamic property of the liquid, i.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the non-equilibrium characteristics that emerge during the process of shock relaxation, especially when two shock waves collide, which differs from a single shock wave's behavior.
  • Using non-equilibrium molecular dynamics simulations, researchers assessed how ultra-strong shock waves interact in a classical gas and examined the link between equilibrium relaxation time and the intensity of these shocks.
  • The findings highlighted that the movement of microscopic particles during the collision significantly affects energy changes, offering new insights into the microscopic mechanics of the relaxation process.
View Article and Find Full Text PDF

Nanoplastics, created by the fragmentation of larger plastic debris, are a serious pollutant posing substantial environmental and health risks. Here, we developed a polystyrene nanoparticle (PS-NP) exposure model during mice pregnancy to explore their effects on embryonic development. We found that exposure to 30 nm PS-NPs during pregnancy resulted in reduced mice placental weight and abnormal embryonic development.

View Article and Find Full Text PDF

Ice surfaces are closely relevant to many physical and chemical properties, such as melting, freezing, friction, gas uptake and atmospheric reaction. Despite extensive experimental and theoretical investigations, the exact atomic structures of ice interfaces remain elusive owing to the vulnerable hydrogen-bonding network and the complicated premelting process. Here we realize atomic-resolution imaging of the basal (0001) surface structure of hexagonal water ice (ice Ih) by using qPlus-based cryogenic atomic force microscopy with a carbon monoxide-functionalized tip.

View Article and Find Full Text PDF

We present a mode-coupled weakly nonlinear model for the evolution of perturbations on cylindrical multilayered shells in a decelerating implosion. We show that nonlinear mode-mode interactions among large wave-number fundamental modes are able to induce the growth of small wave number harmonic modes, i.e.

View Article and Find Full Text PDF

Simultaneous Localization and Mapping (SLAM), as one of the core technologies in intelligent robotics, has gained substantial attention in recent years. Addressing the limitations of SLAM systems in dynamic environments, this research proposes a system specifically designed for plant factory transportation environments, named GY-SLAM. GY-SLAM incorporates a lightweight target detection network, GY, based on YOLOv5, which utilizes GhostNet as the backbone network.

View Article and Find Full Text PDF

Modeling complex contagion in networked systems is an important topic in network science, for which various models have been proposed, including the synergistic contagion model that incorporates coherent interference and the simplicial contagion model that involves high-order interactions. Although both models have demonstrated success in investigating complex contagions, their relationship in modeling complex contagions remains unclear. In this study, we compare the synergy and the simplest form of high-order interaction in the simplicial contagion model, known as the triangular one.

View Article and Find Full Text PDF

Mutations in (RHO) gene commonly cause autosomal dominant retinitis pigmentosa (adRP) without effective therapeutic treatment so far. Compared with genomic DNA-targeting CRISPR-Cas9 system, Cas13 edits RNA for therapeutic applications, avoiding the risk of causing permanent changes in the genome. In particular, a compact and high-fidelity Cas13X (hfCas13X) recently has been developed to degrade targeted RNA with minimal collateral effects and could also be packaged in a single adeno-associated virus for efficient delivery.

View Article and Find Full Text PDF

Synergistic contagion in a networked system occurs in various forms in nature and human society. While the influence of network's structural heterogeneity on synergistic contagion has been well studied, the impact of individual-based heterogeneity on synergistic contagion remains unclear. In this work, we introduce individual-based heterogeneity with a power-law form into the synergistic susceptible-infected-susceptible model by assuming the synergistic strength as a function of individuals' degree and investigate this synergistic contagion process on complex networks.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by loss of function mutations in maternally expressed UBE3A. No gene-specific treatment is available for patients so far. Although intact and transcriptionally active, paternally inherited UBE3A is silenced by elongation of antisense long noncoding RNA UBE3A-ATS in neurons.

View Article and Find Full Text PDF

The conversion of non-neuronal cells to neurons is a promising potential strategy for the treatment of neurodegenerative diseases. Recent studies have reported that shRNA-, CasRx-, or ASO-mediated Ptbp1 suppression could reprogram resident astrocytes to neurons. However, some groups have disputed the interpretation of the data underlying the reported neuron conversion events.

View Article and Find Full Text PDF

Reprogramming Müller glia (MG) into functional cells is considered a promising therapeutic strategy to treat ocular diseases and vision loss. However, current AAV-based system for MG-tracing was reported to have high leakage in recent studies. Here, we focused on reducing the leakage of AAV-based labeling systems and found that different AAV serotypes showed a range of efficiency and specificity in labeling MG, leading us to optimize a human GFAP-Cre reporter system packaged in the AAV9 serotype with the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) removed.

View Article and Find Full Text PDF

The development of anodes with highly efficient electrochemical catalysis and good durability is crucial for solid oxide fuel cells (SOFCs). This paper reports a superior Ru-doped LaSrTiNiO (L0.4STN) anode material with excellent catalytic activity and good stability.

View Article and Find Full Text PDF

In the nucleus, chromatin is folded into hierarchical architecture that is tightly linked to various nuclear functions. However, the underlying molecular mechanisms that confer these architectures remain incompletely understood. Here, we investigated the functional roles of H3 lysine 9 dimethylation (H3K9me2), one of the abundant histone modifications, in three-dimensional (3D) genome organization.

View Article and Find Full Text PDF

In the nucleus, chromosomes are hierarchically folded into active (A) and inactive (B) compartments composed of topologically associating domains (TADs). Genomic regions interact with nuclear lamina, termed lamina-associated domains (LADs). However, the molecular mechanisms underlying these 3D chromatin architectures remain incompletely understood.

View Article and Find Full Text PDF

During El Niño events, increased precipitation occurs over the equatorial central eastern Pacific, corresponding to enhanced convective heating that modulates global climate by exciting atmospheric teleconnections. These precipitation anomalies are projected to shift and extend eastward in response to global warming. We show that this predicted change is caused by narrowing of the meridional span of the underlying El Niño-related sea surface temperature (SST) anomalies that leads to intensification of the meridional gradient of the SST anomalies, strengthening boundary-layer moisture convergence over the equatorial eastern Pacific, and enhancing local positive precipitation anomalies.

View Article and Find Full Text PDF

Interphase chromatin is hierarchically organized into higher-order architectures that are essential for gene functions, yet the biomolecules that regulate these 3D architectures remain poorly understood. Here, we show that scaffold attachment factor B (SAFB), a nuclear matrix (NM)-associated protein with RNA-binding functions, modulates chromatin condensation and stabilizes heterochromatin foci in mouse cells. SAFB interacts via its R/G-rich region with heterochromatin-associated repeat transcripts such as major satellite RNAs, which promote the phase separation driven by SAFB.

View Article and Find Full Text PDF

Background: Nuclei of eukaryotes contain various higher-order chromatin architectures and nuclear bodies (NBs), which are critical for proper nuclear functions. Recent studies showed that active chromatin regions are associated with nuclear speckles (NSs), a type of NBs involved in RNA processing. However, the functional roles of NSs in 3D genome organization remain unclear.

View Article and Find Full Text PDF

The naive embryonic stem cells (nESCs) display unique characteristics compared with the primed counterparts, but the underlying molecular mechanisms remain elusive. Here we investigate the functional roles of Lncenc1, a highly abundant long noncoding RNA in nESCs. Knockdown or knockout of Lncenc1 in mouse nESCs leads to a significantly decreased expression of core pluripotency genes and a significant reduction of colony formation capability.

View Article and Find Full Text PDF