Publications by authors named "Zipeng Yu"

In molecular biology studies, suitable vectors are fundamental tools; however, most vectors can only express one target gene, which limits the ability to study multiple genes simultaneously within the same plant tissue. The traditional method for achieving multi-gene co-expression involves co-transferring multiple plasmids into plant tissues, but this approach is often inefficient due to the difficulty of successfully transforming multiple plasmids at once. To overcome this limitation, we have developed a series of vectors, called pMAGs (Multigene Assembly Genetic vectors), capable of simultaneously expressing or silencing two or three different genes in plants.

View Article and Find Full Text PDF

The balance between plant growth and stress response is a key issue in the field of biology. In this process, mitogen-activated protein kinase 3 (MPK3) and MPK6 contribute to the construction of plants' defense system during stress tolerance, while auxin, a growth-promoting hormone, is the key to maintaining plant growth. Nevertheless, the antagonistic or cooperative relationship between MPK3/6-mediated stress response and auxin-mediated plant growth remains unclear.

View Article and Find Full Text PDF

Salt stress is an important environmental factor that limits plant growth and development. A better understanding of the molecular mechanisms underlying plant salt tolerance will help improve plant performance and crop production under saline conditions. Here, we found that the amino acid methionine significantly improves plant salt tolerance.

View Article and Find Full Text PDF

Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved.

View Article and Find Full Text PDF

This paper employed a two-color double-pulse femtosecond laser (TDFL) technology for surface processing of carbon fiber reinforced polymers (CFRP). By exploring the changes in ablation thresholds for resin and carbon fiber under varying wavelengths and pulse numbers, optimal wavelength combinations were identified. Adjustments to processing parameters and pulse delay enabled precise removal of the CFRP surface, targeting resin while causing no damage to the underlying carbon fibers.

View Article and Find Full Text PDF
Article Synopsis
  • SCARECROW and SHORTROOT are essential for forming the middle cortex in Arabidopsis roots.
  • Gibberellin is important for timing this formation process.
  • Recent research has clarified how these regulators work on a molecular level.
View Article and Find Full Text PDF

Maillard reaction intermediate (MRI) was prepared by the enzymatic hydrolysate (EH) of and fructose. The optimal preparation condition of MRIs was obtained when the Maillard reaction parameters were as follows: fructose addition of 5%, reaction time of 60 min, and temperature of 60 °C. E-Tongue results indicated that the umami and saltiness of MRIs were greater than those of Maillard reaction products (MRPs) and EH, and the taste-enhancing ability of MRIs was even more prominent than that of MRPs.

View Article and Find Full Text PDF

Lateral roots (LRs) increase root surface area and allow plants greater access to soil water and nutrients. LR formation is tightly regulated by the phytohormone auxin. Whereas the transcription factor ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR13 (ERF13) prevents LR emergence in Arabidopsis (Arabidopsis thaliana), auxin activates MITOGEN-ACTIVATED PROTEIN KINASE14 (MPK14), which leads to ERF13 degradation and ultimately promotes LR emergence.

View Article and Find Full Text PDF

The plant hormone auxin plays a key role to maintain root stem cell identity which is essential for root development. However, the molecular mechanism by which auxin regulates root distal stem cell (DSC) identity is not well understood. In this study, we revealed that the cell cycle factor DPa is a vital regulator in the maintenance of root DSC identity through multiple auxin signaling cascades.

View Article and Find Full Text PDF

Auxin and brassinosteroids (BRs) are two major growth-promoting phytohormones that shape hypocotyl elongation; however, the cross-talk between auxin and BR in this process is not fully understood. In this study, we found that auxin-induced hypocotyl elongation is dependent on brassinazole-resistant 1 (BZR1), a core BR signaling component. Auxin promotes BZR1 nuclear accumulation in hypocotyl cells, a process dependent on mitogen-activated protein kinase 3 (MPK3) and MPK6, which are both activated by auxin and whose encoding genes are highly expressed in hypocotyls.

View Article and Find Full Text PDF

Investigating oceanic variations at multiple spatial and temporal scales is vital for an in-depth understanding of the ocean response to global climate change. However, the available observational datasets contain uncertainties and deficiencies that leave them insufficient for investigating global ocean variability with long temporal scales and/or meso spatial scales. Here, we present a daily and century-long (1901-2010) global oceanic simulation dataset with high resolution (1/10° horizontal resolution and 55 vertical layers) forced by 6-hour atmospheric data from ERA-20C.

View Article and Find Full Text PDF

Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut ( L.) is still lacking. Here, 63, 30, and 30 genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (.

View Article and Find Full Text PDF

Gravitropism is an essential adaptive response of land plants. Asymmetric auxin gradients across plant organs, interpreted by multiple auxin signaling components including AUXIN RESPONSE FACTOR7 (ARF7), trigger differential growth and bending response. However, how this fundamental process is strictly maintained in nature remains unclear.

View Article and Find Full Text PDF

Plant growth promoting rhizobacteria (PGPR) refer to bacteria that colonize the rhizosphere and contribute to plant growth or stress tolerance. To further understand the molecular mechanism by which PGPR exhibit symbiosis with plants, we performed a high-throughput single colony screening from the rhizosphere, and uncovered a bacterium (named promoting lateral root, PLR) that significantly promotes Arabidopsis lateral root formation. By 16S rDNA sequencing, PLR was identified as a novel sub-species of Serratia marcescens.

View Article and Find Full Text PDF

Auxin, one of the first identified and most widely studied phytohormones, has been and will remain a hot topic in plant biology. After more than a century of passionate exploration, the mysteries of its synthesis, transport, signaling, and metabolism have largely been unlocked. Due to the rapid development of new technologies, new methods, and new genetic materials, the study of auxin has entered the fast lane over the past 30 years.

View Article and Find Full Text PDF

WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses.

View Article and Find Full Text PDF

Maize height is determined by the number of nodes and the length of internodes. Node number is driven by intercalary meristem formation and internode length by intercalary cell elongation, respectively. However, mechanisms regulating establishment of nodes and internode growth are unclear.

View Article and Find Full Text PDF

Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12.

View Article and Find Full Text PDF

Abscisic acid (ABA) transport plays an important role in systemic plant responses to environmental factors. However, it remains largely unclear about the precise regulation of ABA transporters in plants. In this study, we show that the C-terminally encoded peptide receptor 2 (CEPR2) directly interacts with the ABA transporter NRT1.

View Article and Find Full Text PDF

Auxin plays a critical role in lateral root (LR) formation. The signaling module composed of auxin-response factors (ARFs) and lateral organ boundaries domain transcription factors mediates auxin signaling to control almost every stage of LR development. Here, we show that auxin-induced degradation of the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor ERF13, dependent on MITOGEN-ACTIVATED PROTEIN KINASE MPK14-mediated phosphorylation, plays an essential role in LR development.

View Article and Find Full Text PDF

Salt stress is one of the major environmental stresses limiting plant growth and productivity. To adapt to salt stress, plants have developed various strategies to integrate exogenous salinity stress signals with endogenous developmental cues to optimize the balance of growth and stress responses. Accumulating evidence indicates that phytohormones, besides controlling plant growth and development under normal conditions, also mediate various environmental stresses, including salt stress, and thus regulate plant growth adaptation.

View Article and Find Full Text PDF

Stable transgenic rice line (named KRSV-1) with strong resistance against rice stripe virus was generated using the gene sequence of disease-specific protein by RNA interference. Comprehensive safety assessment of transgenic plants has turned into a significant field of genetic modification food safety. In this study, a safety assessment of KRSV-1 was carried out in a stepwise approach.

View Article and Find Full Text PDF

Plant subclass III SnRK2 protein kinases are widely recognized as key regulators of abscisic acid signaling and downstream stress responses. Recent research has revealed that SnRK2s function in growth-promoting signaling pathways, suggesting that SnRK2s tightly control the yin-yang relationship between plant growth and stress responses.

View Article and Find Full Text PDF