Dual regulations of cell cycle regulator DPa by auxin in root distal stem cell maintenance.

Proc Natl Acad Sci U S A

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237 Qingdao, Shandong, China.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The plant hormone auxin plays a key role to maintain root stem cell identity which is essential for root development. However, the molecular mechanism by which auxin regulates root distal stem cell (DSC) identity is not well understood. In this study, we revealed that the cell cycle factor DPa is a vital regulator in the maintenance of root DSC identity through multiple auxin signaling cascades. On the one hand, auxin positively regulates the transcription of via AUXIN RESPONSE FACTOR 7 and ARF19. On the other hand, auxin enhances the protein stability of DPa through MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3)/MPK6-mediated phosphorylation. Consistently, mutation of the identified three threonine residues (Thr, Thr, and Thr) of DPa to nonphosphorylated form alanine (DPa) highly decreased the phosphorylation level of DPa, which decreased its protein stability and affected the maintenance of root DSC identity. Taken together, this study provides insight into the molecular mechanism of how auxin regulates root distal stem cell identity through the dual regulations of DPa at both transcriptional and posttranslational levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175748PMC
http://dx.doi.org/10.1073/pnas.2218503120DOI Listing

Publication Analysis

Top Keywords

stem cell
16
root distal
12
distal stem
12
dsc identity
12
dual regulations
8
cell cycle
8
auxin
8
cell identity
8
molecular mechanism
8
mechanism auxin
8

Similar Publications

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF