Publications by authors named "Zhun Lin"

Acute respiratory tract diseases (ARDs) are predominantly caused by viral infections, with one of their hallmark characteristics being multiple viral co-infections. Such multiple viral infections not only complicate therapeutic interventions but also lead to an increase in mortality rates. Most traditional bioassays, however, are limited to identifying a single type of virus, leading to missed diagnoses in samples with multiple respiratory pathogens.

View Article and Find Full Text PDF

Circulating tumor cell (CTC) detection is crucial for early cancer diagnosis and real-time metastasis monitoring. Conventional immunomagnetic nanomaterials (IMNs) used for CTC enrichment face limitations such as low purity and inefficiency. Although cell membrane-coated IMNs have been explored to reduce nonspecific leukocyte binding, challenges persist, including high membrane consumption, low encapsulation efficiency, and unpredictable membrane orientation.

View Article and Find Full Text PDF

Single-cell analysis of phenotypic plasticity could improve the development of more effective therapeutics. Still, the development of tools to measure single-cell heterogeneity has lagged due to difficulties in manipulating and culturing single cells. Here, we describe a single-cell culture and phenotyping platform that employs a starburst microfluidic network and automatic liquid handling system to capture single cells for long-term culture and multi-dimensional analysis and quantify their clonal properties their surface biomarker and secreted cytokine/growth factor profiles.

View Article and Find Full Text PDF

Commencing with the breakdown of the intestinal barrier, various pathogenic factors, such as dysbiosis of the gut microbiota, harmful inflammatory cytokines, and immune system imbalance, collectively contribute to the development of colitis. Numerous interventions focusing on single factors have been developed to provide short-term therapeutic benefits, but the continued existence of unresolved pathogenic factors can lead to disease exacerbation. Here we have designed a multicomponent system-inulin microspheres encapsulating selenium-containing nanomicelles, aiming to tackle the multiple factors associated with colitis.

View Article and Find Full Text PDF

CYP2C19 gene single nucleotide polymorphisms (SNPs) should be considered in the clinical use of clopidogrel as they have important guiding value for predicting the risk of bleeding and thrombosis after clopidogrel treatment. The CRISPR/Cas system is increasingly used for SNP detection owing to its single-nucleotide mismatch specificity. Simultaneous detection of multiple SNPs for rapid identification of the CYP2C19 genotype is important, but there is no method to detect a wide variety of CYP2C19 SNPs.

View Article and Find Full Text PDF

The early diagnosis of acute myocardial infarction (AMI) is dependent on the combined feedback of multiple cardiac biomarkers. However, it remains challenging to precisely detect multicardiac biomarkers in complex blood early due to the lack of sensitive and specific diagnostic indicators and the low abundance and small size of associated biomarkers with high specificity (such as microRNAs). To make matters worse, spectral overlap significantly limits the multiplex analysis of cardiac biomarkers by fluorescent probes, leading to bias in the diagnosis of myocardial infarction.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Patient-derived organoid (PDO) has great potential in precision oncology, but low success rate, time-consuming culture, and lack of tumor microenvironment (TME) limit its application. Mesenchymal stromal cells (MSC) accumulate in primary site to support tumor growth and recruit immune cells to form TME.

View Article and Find Full Text PDF

The ongoing coronavirus disease 2019 (COVID-19) pandemic has boosted the development of antiviral research. Microfluidic technologies offer powerful platforms for diagnosis and drug discovery for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis and drug discovery. In this review, we introduce the structure of SARS-CoV-2 and the basic knowledge of microfluidic design.

View Article and Find Full Text PDF

Surface proteins of cells are generally recognized through receptor-ligand interactions (RLIs) in disease diagnosis, but their nonuniform spatial distribution and higher-order structure lead to low binding affinity. Constructing nanotopologies that match the spatial distribution of membrane proteins to improve the binding affinity remains a challenge. Inspired by the multiantigen recognition of immune synapses, we developed modular DNA-origami-based nanoarrays with multivalent aptamers.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicle (tEV) biomarkers can reflect cancer cell phenotypes and have great potential for cancer diagnosis and treatment. However, tEVs display high heterogeneity, and rapid and sensitive identification of EV biomarkers remains challenging due to their low expression. Spectral overlap also significantly limits the multiplex analysis of EV biomarkers by fluorescent probes.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) as non-invasive biomarkers have great potential in evaluating tumor progression and prognosis. However, effective enrichment of CTCs and minimizing phenotypic bias remain a serious challenge. Herein, a DNA tetrahedron-aptamer complex-mediated rolling circle amplification (TDN-RCA) strategy is developed for cell surface protein signal amplification and CTC enrichment, employing DNA tetrahedron-EpCAM aptamer complex as a scaffold and initiating rolling circle amplification (RCA) reaction on the surface of CTCs in situ.

View Article and Find Full Text PDF

Serological assay for coronavirus 2019 (COVID-19) patients including asymptomatic cases can inform on disease progression and prognosis. A detection method taking into account multiplex, high sensitivity, and a wider detection range will help to identify and treat COVID-19. Here we integrated color-size dual-encoded beads and rolling circle amplification (RCA) into a bead-based fluorescence immunoassay implemented in a size sorting chip to achieve high-throughput and sensitive detection.

View Article and Find Full Text PDF

DNA is a biological polymer that encodes and stores genetic information in all living organism. Particularly, the precise nucleobase pairing inside DNA is exploited for the self-assembling of nanostructures with defined size, shape and functionality. These DNA nanostructures are known as framework nucleic acids (FNAs) for their skeleton-like features.

View Article and Find Full Text PDF

Detection of circulating tumor cells (CTCs) has provided a noninvasive and efficient approach for early diagnosis, treatment, and prognosis of cancer. However, efficient capture of CTCs in the clinical environment is very challenging because of the extremely rare and heterogeneous expression of CTCs. Herein, we fabricated a multimarker microfluidic chip for the enrichment of heterogeneous CTCs from peripheral blood samples of breast cancer patients.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are rare and lack definite biomarkers, necessitating new methods for a robust expansion. Here, we developed a microfluidic single-cell culture (SCC) approach for expanding and recovering colorectal CSCs from both cell lines and tumor tissues. By incorporating alginate hydrogels with droplet microfluidics, a high-density microgel array can be formed on a microfluidic chip that allows for single-cell encapsulation and nonadhesive culture.

View Article and Find Full Text PDF

Tumor tropism metastasis is a multi-step process that involves interactions between tumor cells and the microenvironment. Due to the limitations of experimental techniques, current studies are not able to gain insight into the dynamic process of such tropism migration. To overcome this issue, we developed a paper-supported co-culture system for dynamic investigations of the lung-tropic migration of breast cancer cells.

View Article and Find Full Text PDF

Screens of cancer stem cells (CSCs)-specific agents present significant challenges to conventional cell assays due to the difficulty in preparing CSCs ready for drug testing. To overcome this limitation, developed is a microfluidic single-cell assay for screening breast cancer stem cell-specific agents. This assay takes advantage of the single-cell clone-forming capability of CSCs, which can be specifically inhibited by CSC-targeting agents.

View Article and Find Full Text PDF