A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Micro-Engineered Organoid-on-a-Chip Based on Mesenchymal Stromal Cells to Predict Immunotherapy Responses of HCC Patients. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Patient-derived organoid (PDO) has great potential in precision oncology, but low success rate, time-consuming culture, and lack of tumor microenvironment (TME) limit its application. Mesenchymal stromal cells (MSC) accumulate in primary site to support tumor growth and recruit immune cells to form TME. Here, MSC and peripheral blood mononuclear cells (PBMC) coculture is used to construct HCC organoid-on-a-chip mimicking original TME and provide a high-throughput drug-screening platform to predict outcomes of anti-HCC immunotherapies. HCC-PDOs and PBMC are co-cultured with MSC and Cancer-associated fibroblasts (CAF). MSC increases success rate of biopsy-derived PDO culture, accelerates PDO growth, and promotes monocyte survival and differentiation into tumor-associated macrophages. A multi-layer microfluidic chip is designed to achieve high-throughput co-culture for drug screening. Compared to conventional PDOs, MSC-PDO-PBMC and CAF-PDO-PBMC models show comparable responses to chemotherapeutic or targeted anti-tumor drugs but more precise prediction potential in assessing patients' responses to anti-PD-L1 drugs. Moreover, this microfluidic platform shortens PDO growth time and improves dimensional uniformity of organoids. In conclusion, the study successfully constructs microengineered organoid-on-a-chip to mimic TME for high-throughput drug screening, providing novel platform to predict immunotherapy response of HCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520686PMC
http://dx.doi.org/10.1002/advs.202302640DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
stromal cells
8
predict immunotherapy
8
hcc patients
8
success rate
8
platform predict
8
pdo growth
8
drug screening
8
micro-engineered organoid-on-a-chip
4
organoid-on-a-chip based
4

Similar Publications