Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Screens of cancer stem cells (CSCs)-specific agents present significant challenges to conventional cell assays due to the difficulty in preparing CSCs ready for drug testing. To overcome this limitation, developed is a microfluidic single-cell assay for screening breast cancer stem cell-specific agents. This assay takes advantage of the single-cell clone-forming capability of CSCs, which can be specifically inhibited by CSC-targeting agents. The single-cell assay is performed on a microfluidic chip with an array of 3840 cell-capturing units; the single-cell arrays are easily formed by flowing a cell suspension into the microchip. Achieved is a single cell-capture rate of ≈60% thus allowing more than 2000 single cells to be analyzed in a single test. Over long-term suspension culture, only a minority of cells survive and form tumorspheres. The clone-formation rate of MCF-7, MDA-MB-231, and T47D cells is 1.67%, 5.78%, and 5.24%, respectively. The clone-forming inhibition assay is conducted by exposing the single-cell arrays to a set of anticancer agents. The CSC-targeting agents show complete inhibition of single-cell clone formation while the nontargeting ones show incomplete inhibition effects. The resulting microfluidic single-cell assay with the potential to screen CSC-specific agents with high efficiency provides new tools for individualized tumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201901001DOI Listing

Publication Analysis

Top Keywords

cancer stem
12
microfluidic single-cell
12
single-cell assay
12
breast cancer
8
stem cells
8
single-cell
8
single-cell clone-forming
8
clone-forming inhibition
8
inhibition assay
8
csc-targeting agents
8

Similar Publications

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.

Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

Glanzmann thrombasthenia (GT) is a rare autosomal recessive platelet disorder characterized by abnormalities in platelet aggregation, resulting from quantitative or qualitative defects in integrins αIIb and β3. Currently, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only potentially curative therapeutic approach for severe GT. In this report, we present 2 children with GT that underwent successful allo-HSCT, along with 2008 to 2022 data from the Center for International Blood and Marrow Transplant Research and a summary of the existing literature providing further evidence that allo-HSCT can be a curative approach that prevents severe and life-threatening bleeding in GT.

View Article and Find Full Text PDF