Unlabelled: Ocean surface gravity waves facilitate gas exchanges primarily in two ways: (1) the formation of bubbles during wave breaking increases the surface area available for gas exchange, promoting CO transfer, and (2) wave-current interaction processes alter the sea surface partial pressure of CO and gas solubility, consequently affecting the CO flux. This study tests these influences using a global ocean-ice-biogeochemistry model under preindustrial conditions. The simulation results indicate that both wave-current interaction processes and the sea-state-dependent gas transfer scheme-which explicitly accounts for bubble-mediated gas transfer velocity-influence the air-sea CO flux, with substantial spatial and seasonal variations.
View Article and Find Full Text PDFDeveloping a sustainable, in-situ responsive sensing method for continuously monitoring water quality is crucial for water use and quality management globally. Conventional water quality monitoring sensors face challenges in achieving ultrafast response time and are non-recyclable. We present a self-assembly approach for a closed-loop recyclable, autonomous self-healing and transparent dielectric material with nanostructured amphiphobic surfaces (termed 'ReSURF').
View Article and Find Full Text PDFAn in-depth understanding of the electronic structure of 2H-MoTe at the atomic layer limit is a crucial step towards its exploitation in nanoscale devices. Here, we show that millimeter-sized monolayer (ML) MoTe samples, as well as smaller sized bilayer (BL) samples, can be obtained using the mechanical exfoliation technique. The electronic structure of these materials is investigated by angle-resolved photoemission spectroscopy (ARPES) for the first time and by density functional theory (DFT) calculations.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs.
View Article and Find Full Text PDFBioengineering (Basel)
February 2025
Myocardial infarction (MI) is a cardiovascular disease (CVD) with high morbidity and mortality worldwide, which is a serious threat to human life and health. Inflammatory and immune responses are initiated immediately after MI, and unbalanced inflammation post-MI can lead to cardiac dysfunction, scarring, and ventricular remodeling, emphasizing the critical need for an effective inflammation-regulating treatment. With the development of novel therapies, the drug delivery system specific to inflammatory cells offers significant potential.
View Article and Find Full Text PDFBackground And Purpose: Breast cancer is a leading threat to women's health, with approximately 70% of cases being estrogen receptor-positive. SGK3 is regulated by estrogen and is positively associated with estrogen receptor expression, although its molecular role remains unclear.
Experimental Approach: Proteomics was used to identify SGK3's downstream targets.
Two-dimensional organic-inorganic perovskites have garnered extensive interest owing to their unique structure and optoelectronic performance. However, their loose structures complicate the elucidation of mechanisms and tend to cause uncertainty and variations in experimental and calculated results. This can generally be rooted in dynamically swinging spacer molecules through two mechanisms: one is the intrinsic geometric steric effect, and the other is related to the electronic effect orbital overlapping and electronic screening.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Rare dehydrated ginsenosides barely exist in natural ginseng plants. Herein, the confined microwave technique was utilized to transform the main ginsenosides of leaves (PNL) into dehydrated ginsenosides. The main microwave-treated products of dried PNL are dehydrated ginsenoside Rk1, Rg5, notoginsenoside SFt3, and SFt4.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
MoS and related transition metal dichalcogenides (TMDs) have recently been reported as having extensive applications in nanoelectronics and catalysis because of their unique physical and chemical properties. However, one practical challenge for MoS-based applications arises from the easiness of oxygen contamination, which is likely to degrade performance. To this end, understanding the states and related energetics of adsorbed oxygen is critical.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
The quantum Griffiths singularity (QGS) is a phenomenon driven by quenched disorders that break conventional scaling invariance and result in a divergent dynamic critical exponent during quantum phase transitions (QPT). While this phenomenon has been well-documented in low-dimensional conventional superconductors and in three-dimensional (3D) magnetic metal systems, its presence in 3D superconducting systems and in unconventional high-temperature superconductors (high- SCs) remains unclear. In this study, we report the observation of robust QGS in the superconductor-metal transition (SMT) of both quasi-2D and 3D anisotropic unconventional high- superconductor CaFe Ni AsF ( <5%) bulk single crystals, where the QGS states persist to up to 5.
View Article and Find Full Text PDFPhytother Res
January 2025
Inflammation is an essential step for the etiology of multiple diseases. Clinically, due to the limitations of current drugs for the treatment of inflammatory diseases, such as serious side effects and expensive costs, it is urgent to explore novel mechanisms and medicines. Natural products have received extensive attention recently because of their multi-component and multi-target characteristics.
View Article and Find Full Text PDFTo generate and manipulate spin-polarized electronic states in solids are crucial for modern spintronics. The textbook routes employ quantum well states or Shockley/topological type surface states whose spin degeneracy is lifted by strong spin-orbit coupling and inversion symmetry breaking at the surface/interface. The resultant spin polarization is usually truncated because of the intertwining between multiple orbitals.
View Article and Find Full Text PDFElectronic orders such as charge density wave (CDW) and superconductivity raise exotic physics and phenomena as evidenced in recently discovered kagome superconductors and transition metal chalcogenides. In most materials, CDW induces a weak, perturbative effect, manifested as shadow bands, minigaps, resistivity kinks, etc. Here we demonstrate a unique example-transition metal tetratellurides TaTe_{4}, in which the CDW order dominates the electronic structure and transport properties.
View Article and Find Full Text PDFSci Bull (Beijing)
September 2024
The stabilization of the formamidinium lead iodide (FAPbI) structure is pivotal for the development of efficient photovoltaic devices. Employing two-dimensional (2D) layers to passivate the three-dimensional (3D) perovskite is essential for maintaining the α-phase of FAPbI and enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs). However, the role of bulky ligands in the phase management of 2D perovskites, crucial for the stabilization of FAPbI, has not yet been elucidated.
View Article and Find Full Text PDFThe superconducting gap symmetry is crucial in understanding the underlying superconductivity mechanism. Angle-resolved photoemission spectroscopy (ARPES) has played a key role in determining the gap symmetry in unconventional superconductors. However, it has been considered so far that ARPES can only measure the magnitude of the superconducting gap but not its phase; the phase has to be detected by other phase-sensitive techniques.
View Article and Find Full Text PDFFerroelasticity is a phenomenon in which a material exhibits two or more equally stable orientation variants and can be switched from one form to another under an applied stress. Recent works have demonstrated that two-dimensional layered organic-inorganic hybrid Ruddlesden-Popper perovskites can serve as ideal platforms for realizing ferroelasticity, however, the ferroelastic (FE) behavior of structures with a single octahedra layer such as (BA)PbI [BA = CH(CH)NH] has remained elusive. Herein, by using a combined first-principles and metadynamics approach, the FE behavior of (BA)PbI under mechanical and thermal stresses is uncovered.
View Article and Find Full Text PDFNatl Sci Rev
February 2024
We review recent progress in the electronic structure study of intrinsic magnetic topological insulators (MnBiTe) · (BiTe) ([Formula: see text]) family. Specifically, we focus on the ubiquitously (nearly) gapless behavior of the topological Dirac surface state observed by photoemission spectroscopy, even though a large Dirac gap is expected because of surface ferromagnetic order. The dichotomy between experiment and theory concerning this gap behavior is perhaps the most critical and puzzling question in this frontier.
View Article and Find Full Text PDFWater is often viewed as detrimental to organic halide perovskite stability. However, evidence highlights its efficacy as a solvent during organic perovskite liquid synthesis. This paradox prompts an investigation into water's influence on perovskite nanoclusters.
View Article and Find Full Text PDFJ Inflamm Res
October 2023
Hyperoside is a flavonol glycoside mainly found in plants of the genera and , and also detected in many plant species such as , , , , and . This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes.
View Article and Find Full Text PDFACS Nano
September 2023
As a prototype of the Weyl superconductor, layered molybdenum ditelluride (MoTe) encompasses two semimetallic phases (1T' and T) which differentiate from each other via a slight tilting of the out-of-plane lattice. Both phases are subjected to serious phase mixing, which complicates the analysis of its origin of superconductivity. Herein, we explore the electron-phonon coupling (EPC) of the monolayer semimetallic MoTe, without phase ambiguity under this thickness limit.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2023
Solvent engineering is highly essential for the upscaling synthesis of high-quality metal halide perovskite materials for solar cells. The complexity in the colloidal containing various residual species poses great difficulty in the design of the formula of the solvent. Knowledge of the energetics of the solvent-lead iodide (PbI) adduct allows a quantitative evaluation of the coordination ability of the solvent.
View Article and Find Full Text PDF