Publications by authors named "Yongqiang Qiu"

Coaxial rotor helicopters have a wide range of civilian and military applications; however, the collision risk of the upper and lower blades that comes with the coaxial rotor system remains. This paper introduces a blade-tip distance measurement method based on coded ultrasonic ranging to tackle this challenge. Coded ultrasonic ranging with phase modulation was adopted to improve the measurement rate.

View Article and Find Full Text PDF

Coaxial rotor helicopters have many advantages and have a wide range of civilian and military applications; however, there is a risk of blade collision between the upper and lower rotor blades, and the challenge still exists in balancing rotor parameters and flight control. In this paper, a blade tip distance measurement method based on coded ultrasonic ranging and phase triggering is proposed to tackle this measurement environment and expand the application of ultrasonic ranging in high-speed dynamic measurement. The time of flight () of coded ultrasonic ranging is calculated by the amplitude threshold improvement method and cross-correlation method, and the sound velocity is compensated by a proposed multi-factor compensation method.

View Article and Find Full Text PDF

Coaxial rotor helicopters have great potential in civilian and commercial uses, with many advantages, but challenges remain in the accurate measurement of rotor blades' distance to prevent blade collision. In this paper, a blade tip distance measurement method based on ultrasonic measurement window and phase triggering is proposed, and the triggering time of the transmitter is studied. Due to the complexity of the measured signal, bandpass filtering and a time-of-flight (TOF) estimation based on the power density of the received signal are utilised.

View Article and Find Full Text PDF

Drug delivery to the anterior and posterior segments of the eye is impeded by anatomical and physiological barriers. Increasingly, the bioeffects produced by ultrasound are being proven effective for mitigating the impact of these barriers on ocular drug delivery, though there does not appear to be a consensus on the most appropriate system configuration and operating parameters for this application. In this review, the fundamental aspects of ultrasound physics most pertinent to drug delivery are presented; the primary phenomena responsible for increased drug delivery efficacy under ultrasound sonication are discussed; an overview of common ocular drug administration routes and the associated ocular barriers is also given before reviewing the current state of the art of ultrasound-mediated ocular drug delivery and its potential future directions.

View Article and Find Full Text PDF

Objective: The effect of dexmedetomidine on postoperative renal function was investigated in patients undergoing cardiac valve surgery under cardiopulmonary bypass (CPB).

Design: A randomized controlled trial.

Setting: University teaching, grade A tertiary hospital.

View Article and Find Full Text PDF

Background: Laparoscopic resection of gastric gastrointestinal stromal tumors (GISTs) is technically feasible and associated with favorable outcomes. We compared the clinical efficacy of hand-assisted laparoscopic surgery (HLS) and total laparoscopic surgery (TLS) for gastric GISTs.

Methods: We retrospectively analyzed the clinical data of 69 consecutive patients diagnosed with a gastric GIST in a tertiary referral teaching hospital from December 2016 to December 2020.

View Article and Find Full Text PDF

Wireless capsule endoscopy has been used for the clinical examination of the gastrointestinal (GI) tract for two decades. However, most commercially available devices only utilise optical imaging to examine the GI wall surface. Using this sensing modality, pathology within the GI wall cannot be detected.

View Article and Find Full Text PDF

A complementary metal-oxide-semiconductor (CMOS) application-specific integrated circuit (ASIC) has been developed to generate arbitrary, dynamic phase patterns for acoustic hologram applications. An experimental prototype has been fabricated to demonstrate phase shaping. It comprises a cascadable 1 ×9 array of identical, independently controlled signal generators implemented in a 0.

View Article and Find Full Text PDF

Lead zirconate titanate (PZT)-based piezoelectric micromachined ultrasonic transducers (PMUTs) for particle manipulation applications were designed, fabricated, characterized, and tested. The PMUTs had a diaphragm diameter of 60 [Formula: see text], a resonant frequency of ~8 MHz, and an operational bandwidth (BW) of 62.5%.

View Article and Find Full Text PDF

GDF1 plays an important role in left-right patterning and genetic mutations in the coding region of GDF1 are associated with congenital heart disease (CHD). However, the genetic variation in the promoter of GDF1 with sporadic CHD and its expression regulation is little known. The association of the genetic variation in GDF1 promoter with CHD was examined in two case-control studies, including 1084 cases and 1198 controls in the first study and 582 cases and 615 controls in the second study.

View Article and Find Full Text PDF

Contactless sample confinement would enable a whole host of new studies in developmental biology and neuroscience, in particular, when combined with long-term, wide-field optical imaging. To achieve this goal, we demonstrate a contactless acoustic gradient force trap for sample confinement in light sheet microscopy. Our approach allows the integration of real-time environmentally controlled experiments with wide-field low photo-toxic imaging, which we demonstrate on a variety of marine animal embryos and larvae.

View Article and Find Full Text PDF

Clinical endoscopy and colonoscopy are commonly used to investigate and diagnose disorders in the upper gastrointestinal tract and colon, respectively. However, examination of the anatomically remote small bowel with conventional endoscopy is challenging. This and advances in miniaturization led to the development of video capsule endoscopy (VCE) to allow small bowel examination in a noninvasive manner.

View Article and Find Full Text PDF

Replication of genome-wide significant association SNPs in independent populations is an essential approach for identifying gene-disease relationships. Therefore, we sought to investigate the top 21 SNPs (rs10507454, rs11897156, rs11897991, rs12325203, rs12541835, rs13395322, rs1525035, rs16936892, rs17010027, rs17045859, rs17136827, rs1866525, rs2045590, rs4547758, rs4655688, rs7107438, rs761353, rs8127139, rs9312305, rs9407874 and rs9865108) from a genome-wide association study of essential hypertension in Mongolians. This was a community-based case-control study involving 428 hypertensives and 638 normotensives from Kerqinzuoyihou Banner,Tongliao, Inner Mongolian Autonomous Region, China.

View Article and Find Full Text PDF

Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components.

View Article and Find Full Text PDF

The higher performance of relaxor-based piezocrystals compared with piezoceramics is now well established, notably including improved gain-bandwidth product, and these materials have been adopted widely for biomedical ultrasound imaging. However, their use in other applications, for example as a source of focused ultrasound for targeted drug delivery, is hindered in several ways. One of the issues, which we consider here, is in shaping the material into the spherical geometries used widely in focused ultrasound.

View Article and Find Full Text PDF

Objective: To evaluate the prevalence and potential risk factors of hypertension among community residents aged 18 years old and over in Qiqihar in 2014.

Methods: 5850 subjects aged ≥ 18 years old in three communities in Qiqihar were selected by random cluster sampling. The demographic information, personal health condition, living habits and the prevalence of hypertension using unified design questionnaire were surveyed.

View Article and Find Full Text PDF

This paper reports the development of a two-dimensional thick film lead zirconate titanate (PZT) ultrasonic transducer array, operating at frequency approximately 7.5MHz, to demonstrate the potential of this fabrication technique for microparticle manipulation. All layers of the array are screen-printed then sintered on an alumina substrate without any subsequent patterning processes.

View Article and Find Full Text PDF

Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices.

View Article and Find Full Text PDF

An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation.

View Article and Find Full Text PDF

We report an optically transparent ultrasonic device, consisting of indium-tin-oxide-coated lithium niobate (LNO), for use in particle manipulation. This device shows good transparency in the visible and near-infrared wavelengths and, acoustically, compares favorably with conventional prototype devices with silver electrodes.

View Article and Find Full Text PDF

Ultrasonic particle manipulation tools have many promising applications in life sciences, expanding on the capabilities of current manipulation technologies. In this paper, the ultrasonic manipulation of particles and cells along a microfluidic channel with a piezoelectric array is demonstrated. An array integrated into a planar multilayer resonator structure drives particles toward the pressure nodal plane along the centerline of the channel, then toward the acoustic velocity maximum centered above the subset of elements that are active.

View Article and Find Full Text PDF