Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coaxial rotor helicopters have many advantages and have a wide range of civilian and military applications; however, there is a risk of blade collision between the upper and lower rotor blades, and the challenge still exists in balancing rotor parameters and flight control. In this paper, a blade tip distance measurement method based on coded ultrasonic ranging and phase triggering is proposed to tackle this measurement environment and expand the application of ultrasonic ranging in high-speed dynamic measurement. The time of flight () of coded ultrasonic ranging is calculated by the amplitude threshold improvement method and cross-correlation method, and the sound velocity is compensated by a proposed multi-factor compensation method. The static distance error of coded ranging with different codes are all within ±0.5 mm in the range of 10-1000 mm. The measurement error characteristics under different trigger phases and different rotational speeds are studied, and the error model is fitted by the back-propagation neural network method. After compensation, the vertical distance measurement errors are within ±2 mm in the range of 100-1000 mm under the condition that the rotational speed of the blade is up to 1020 RPM. It also provides a potential solution for other high-speed measurement problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767648PMC
http://dx.doi.org/10.3390/mi16010061DOI Listing

Publication Analysis

Top Keywords

ultrasonic ranging
16
distance measurement
12
coded ultrasonic
12
measurement error
8
coaxial rotor
8
rotor blades
8
based coded
8
measurement
6
ranging
5
method
5

Similar Publications

In this study, the systematic investigation focused on how varying power levels of ultrasonic (US) pretreatment, when integrated with electrohydrodynamic (EHD) drying, influence the physicochemical properties of yam. Yam samples were subjected to ultrasonic pretreatment at 30 °C for 30 min using power levels of 0 W (Control), 150 W, 180 W, 210 W, 240 W, and 270 W, respectively, followed by drying in an EHD system. During the drying process, a range of metrics were measured, including moisture content, average drying rate, color change, as well as rehydration capacity.

View Article and Find Full Text PDF

Widefield acoustics heuristic: advancing microphone array design for accurate spatial tracking of echolocating bats.

BMC Ecol Evol

September 2025

Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.

Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.

View Article and Find Full Text PDF

Additive Manufactured Programmable Scaffold Sensor Based on Triply Periodic Minimal Surfaces for Broad-Spectrum Pressure Detection.

ACS Appl Mater Interfaces

September 2025

DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.

Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.

View Article and Find Full Text PDF

Characterization of skeletal muscle contraction using a flexible and wearable ultrasonic sensor.

Prog Mol Biol Transl Sci

September 2025

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:

Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.

View Article and Find Full Text PDF

Introduction: Burn wounds are painful injuries that demand immediate and effective management. Conventional wound care solutions often have limitations, such as discomfort during application or removal and potential damage to healing tissue. Therefore, developing novel wound dressings that support biological processes and promote wound healing is highly beneficial.

View Article and Find Full Text PDF