Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lead zirconate titanate (PZT)-based piezoelectric micromachined ultrasonic transducers (PMUTs) for particle manipulation applications were designed, fabricated, characterized, and tested. The PMUTs had a diaphragm diameter of 60 [Formula: see text], a resonant frequency of ~8 MHz, and an operational bandwidth (BW) of 62.5%. Acoustic pressure output in water was 9.5 kPa at 7.5 mm distance from a PMUT element excited with a unipolar waveform at 5 V . The element consisted of 20 diaphragms connected electrically in parallel. Particle trapping of 4 [Formula: see text] silica beads was shown to be possible with 5 V unipolar excitation. Trapping of multiple beads by a single element and deterministic control of particles via acoustophoresis without the assistance of microfluidic flow were demonstrated. It was found that the particles move toward diaphragm areas of highest pressure, in agreement with literature and simulations. Unique bead patterns were generated at different driving frequencies and were formed at frequencies up to 60 MHz, much higher than the operational BW. Levitation planes were generated above the 30 MHz driving frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2019.2926211DOI Listing

Publication Analysis

Top Keywords

particle manipulation
8
[formula text]
8
thin film
4
film pzt-based
4
pzt-based pmut
4
pmut arrays
4
arrays deterministic
4
deterministic particle
4
manipulation lead
4
lead zirconate
4

Similar Publications

Acoustic tweezers leverage acoustic radiation forces for noncontact manipulation. One of the core bottlenecks in multidimensional manipulation is the lack of a systematic design methodology, which prevents the generation of an acoustic field that simultaneously meets the collaborative control requirements of multi-degree-of-freedom forces and torques, making it difficult to achieve precise control under conditions of stable suspension, high-frequency rotation, and complex spatial constraints. To address this challenge, we develop an end-to-end inverse design methodology for acoustic tweezers based on coding metasurfaces, establishing a dual-objective, dual-scale optimization paradigm.

View Article and Find Full Text PDF

Topology in Thermal, Particle, and Plasma Diffusion Metamaterials.

Chem Rev

September 2025

Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, P. R. China.

Diffusion is a fundamental process in the transfer of mass and energy. Diffusion metamaterials, a class of engineered materials with distinctive properties, enable precise control and manipulation of diffusion processes. Meanwhile, topology, a branch of mathematics, has attracted growing interest within the condensed matter physics community.

View Article and Find Full Text PDF

[Harnessing retroviral engineering for genome reprogramming].

Med Sci (Paris)

September 2025

CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.

The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.

View Article and Find Full Text PDF

Dynamic and precise electromagnetic levitation of single cells.

Proc Natl Acad Sci U S A

September 2025

Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.

The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.

View Article and Find Full Text PDF

Zero- to ultralow-field nuclear magnetic resonance.

Prog Nucl Magn Reson Spectrosc

February 2025

Brown Boveri Platz 4, 5400 Baden, Switzerland.

Zero and ultralow-field nuclear magnetic resonance (ZULF NMR) is an NMR modality where experiments are performed in fields at which spin-spin interactions within molecules and materials are stronger than Zeeman interactions. This typically occurs at external fields of microtesla strength or below, considerably smaller than Earth's field. In ZULF NMR, the measurement of spin-spin couplings and spin relaxation rates provides a nondestructive means for identifying chemicals and chemical fragments, and for conducting sample or process analyses.

View Article and Find Full Text PDF