Publications by authors named "Yilong Hua"

The modification of nanoscale zero-valent iron (nZVI) by loading or incorporating sulfur into the iron crystal lattice can augment their efficacy in the removal of hydrophobic contaminants from wastewater. Nevertheless, the reactivity of sulfur-embedded nZVI (SnZVI) in immobilizing hydrophilic uranyl ions and the long-term stability of the sequestered uranium has received little attention. This study employed NaSO to modify the nZVI with different S/Fe molar ratios (0.

View Article and Find Full Text PDF

The incorporation of uranium into the magnetite generated through via electrochemical methods represents a sustainable strategy for remediation of uranium-contaminated organic wastewater. Nevertheless, the influence mechanisms of organics on this treatment process remain insufficiently understood. This study used an electrochemical system featuring iron and graphite electrodes along with sodium chloride as the electrolyte to investigate the impact of various organics on uranium removal.

View Article and Find Full Text PDF

Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN).

View Article and Find Full Text PDF

Mining wastewater with heavy metals poses a serious threat to the ecological environment. However, the acute single and combined ecological effects of heavy metals, such as chromium (Cr) and nickel (Ni), on freshwater ostracods, and the development of relevant prediction models, remain poorly understood. In this study, Heterocypris sp.

View Article and Find Full Text PDF

Nanoscale zerovalent iron (Fe)-based materials have been demonstrated to be a effective method for the U(VI) removal. However, limited research has been conducted on the long-term immobilization efficiency and mechanism of Fe-based materials for U(VI), which are essential for achieving safe handling and disposal of U(VI) on a large scale. In this study, the prepared carboxymethyl cellulose (CMC) and sulfurization dual stabilized Fe (CMC-Fe/FeS) exhibited excellent long-term immobilization performances for U(VI) under both anoxic and oxic conditions, with the immobilization efficiencies were respectively reached over 98.

View Article and Find Full Text PDF

Efficient degradation of antibiotic by peroxydisulfate (PDS)-based advanced oxidation processes in complex water environment is challenging due to the interference of impurities and the low activation efficiency of PDS caused by its symmetric structure. Herein, a novel CuS/PDS system was developed, which can selectively remove tetracycline hydrochloride (TC) without interference of inorganic ions (e.g.

View Article and Find Full Text PDF

Doping uranium into a room-temperature stable FeO lattice structure effectively reduces its migration. However, the synergistic or competitive effects of coexisting ions in an aqueous solution directly affect the uranium mineralization efficiency and the structural stability of uranium-bearing FeO. The effects of calcium, carbonate, and phosphate on uranium electromineralization were investigated via batch experiments and theoretical calculations.

View Article and Find Full Text PDF

As an emerging versatile technology for separating uranium from uranium-containing wastewater (UCW), microbial fuel cell (MFC) offers a novel approach to UCW treatment. Its cathode is essential for the treatment of UCW. To thoroughly investigate the efficacy of MFC in treating UCW, investigations were conducted using MFCs with five materials (containing iron sheet (IP), stainless steel mesh (SSM), carbon cloth (CC), carbon brush (CB), and nickel foam (NF)) as cathodes.

View Article and Find Full Text PDF

Resourcization has become a popular research topic for the final disposal of municipal solid waste incineration fly ash (MSWI FA). However, the current research is limited to building material preparation or valuable chloride recovery, which may cause resource waste and secondary pollution. A unique process, heat treatment with the addition of kaolin (KL), was presented to achieve complete resource utilization of MSWI FA.

View Article and Find Full Text PDF

Unlined iron pipe (UIP) is still widely in use in drinking water distribution systems (DWDS), discoloration easily happens after a long-time retention due to iron release, but the influence of initial chlorine on water quality under this condition is not clear. Here, we studied the water quality changes in UIP section reactors under different initial chlorine dosages. Results showed that chlorine could disappeared rapidly within 0.

View Article and Find Full Text PDF

Reduction of the migratory ability of uranium via reduction, co-precipitation or immobilization is a widely used technology for remediation of uranium contaminated groundwater (UCG). However, the re-released uranium due to environmental alterations such as oxidation, acid dissolution, or microbial decomposition limits the long-term effect of UCG remediation. Here, we developed a novel solar-powered electrochemical mineralization (SPEM) system for persistent remediation of UCG under laboratory conditions.

View Article and Find Full Text PDF

Iron-based materials have been widely used for treating uranium-containing wastewater. However, the iron-uranium solids originating by treating radioactive water through pollutant transfer methods has become a new uncontrolled source of persistent radioactive pollution. The safe disposal of such hazardous waste is not yet well-resolved.

View Article and Find Full Text PDF

Developing low-cost electrocatalysts for the nitrate reduction reaction (NORR) with superior performance is of great significance for wastewater treatment. Herein, we synthesized bimetal Cu/Fe nanoparticles encased in N-doped carbon nanofibers (Cu/Fe@NCNFs) through simple electrospinning followed by a pyrolysis reduction strategy. Metallic copper is beneficial for reducing nitrate to nitrite, and the existence of Fe is conducive to convert nitrate and nitrite into nitrogen.

View Article and Find Full Text PDF

Bicarbonate, ubiquitous in natural and waste waters is an important factor regulating the rate and efficiency of pollutant separation and transformation. For example, it can form complexes with U(VI) in the aqueous phase and at the solid-water interface. In this work, we investigated the effect of bicarbonate on the aging of nanoscale zero-valent (nZVI) in the context of U(VI) reduction and removal from wastewater.

View Article and Find Full Text PDF