π-electron injection activated dormant ligands in graphitic carbon nitride for efficient and stable uranium extraction.

J Hazard Mater

Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN). Compared with CN, the maximum adsorption capacity of PCN for uranium increased from 150.9 mg/g to 380.6 mg/g. Furthermore, PCN maintains good adsorption properties over a wide range of uranium concentrations (1 ∼ 60 mg/L) and pH (4 ∼ 8). After 5 consecutive cycles, PCN exhibited sustained uranium removal performance with a little of losses. The experimental and theoretical results show that the enhancement of adsorption performance is mainly due to the ligands activation of CN by delocalization of π electrons from PP. Furthermore, this activation can be enhanced by irradiation, as the CN can be photoexcited to provide additional photoelectrons for PP. As a result, dormant ligands such as N-CN, C-O-C, C-N-H and N-(C) can be activated to participate in coordination with uranium. This work provides theoretical guidance for the design and preparation of high efficiency uranium adsorbent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135445DOI Listing

Publication Analysis

Top Keywords

dormant ligands
8
graphitic carbon
8
carbon nitride
8
uranium
7
ligands
5
π-electron injection
4
injection activated
4
activated dormant
4
ligands graphitic
4
nitride efficient
4

Similar Publications

The awakening of dormant disseminated cancer cells appears to be responsible for the clinical relapses of patients whose primary tumors have been successfully cured months and even years earlier. In the present study, we demonstrate that dormant breast cancer cells lodged in the lungs reside in a highly mesenchymal, nonproliferative phenotypic state. The awakening of these cells is not triggered by a cancer cell-autonomous process.

View Article and Find Full Text PDF

Chemokine Ligands and Receptors Regulate Macrophage Polarization in Atherosclerosis: A Comprehensive Database Mining Study.

CJC Open

March 2025

Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Background: Atherosclerosis is a systemic disease involving multiple blood vessels and a major cause of cardiovascular disease. Current treatment methods (eg, statins) for atherosclerosis can reduce the risk of cardiovascular diseases effectively, but they are insufficient to completely reverse existing atherosclerosis. Macrophages play a central role in development of atherosclerosis.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation.

View Article and Find Full Text PDF

Fragment approaches are long-established in target-based ligand discovery, yet their full transformative potential lies dormant because progressing the initial weakly binding hits to potency remains a formidable challenge. The only credible progression paradigm involves multiple cycles of costly conventional design-make-test-analyse medicinal chemistry. We propose an alternative approach to fragment elaboration, namely performing large numbers of parallel and diverse automated multiple step reactions, and evaluating the binding of the crude reaction products by high-throughput protein X-ray crystallography.

View Article and Find Full Text PDF

Our newly developed AshPhos ligand represents a significant advancement in Buchwald-Hartwig aminations, overcoming many limitations of existing ligands. Created from affordable and accessible materials, AshPhos enhances catalytic performance, especially for extremely difficult substrates, by emphasizing the principles of ligand chelation and cooperativity. Its successful synthesis and application in catalytic aminations underscore its potential for use in the sustainable synthesis of compounds important to medicinal chemistry, materials, and energy.

View Article and Find Full Text PDF