98%
921
2 minutes
20
The incorporation of uranium into the magnetite generated through via electrochemical methods represents a sustainable strategy for remediation of uranium-contaminated organic wastewater. Nevertheless, the influence mechanisms of organics on this treatment process remain insufficiently understood. This study used an electrochemical system featuring iron and graphite electrodes along with sodium chloride as the electrolyte to investigate the impact of various organics on uranium removal. The results showed that disodium ethylenediaminetetraacetate addition delayed magnetite formation, resulting in a final product with a mixture of various iron oxides. However, this alteration did not significantly affect the mechanism and efficiency of uranium removal. In contrast, the introduction of oxalate reduced the particle size of magnetite, thereby shifting the primary mechanism of uranium removal towards adsorption, which results in a slight decrease in removal efficiency. Notably, due to the chelation properties of citrate, which nearly eliminate Fe(II) in the solution, magnetite formation was inhibited, thereby substantially reducing the final uranium removal. A 200-day leaching experiment demonstrated that the structural integrity of the synthesized mineral is predominantly maintained. This study elucidates the impact of common organics on the electrochemical mineralization system for uranium removal and offers theoretical guidance for the treatment of uranium-contaminated organic wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137722 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706.
Redox-sensitive elements figure prominently in studies of the evolution of Earth's surface redox state, including the first major rise in atmospheric O, the Paleoproterozoic Great Oxidation Event. Most Precambrian rocks endured multistage tectonothermal histories, however, adding ambiguity to interpretation of their chemistry. Here, we apply U-Th-Pb isotope geochronology to the highly oxidized ~2.
View Article and Find Full Text PDFBraz J Microbiol
August 2025
Poços de Caldas, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999 (BR 267 Km 533), Poços de Caldas, Minas Gerais, Brazil.
Acidophilic sulfate-reducing bacteria (SRB) are anaerobic microorganisms capable of precipitating metals and raising pH levels in acidic drainage waters. Limited genera have been isolated from acidic sediments. This study aimed to characterize enrichment cultures of acidophilic SRB communities found in uranium mine sediments in Minas Gerais, Brazil.
View Article and Find Full Text PDFAppl Radiat Isot
August 2025
Department of Physics, Dr BR Ambedkar National Institute of Technology, G.T. Road Amritsar Bypass, Jalandhar, 144008, Punjab, India. Electronic address:
In this removal study, the removal efficiency of Uranium from aqueous solution using cellulose extracted from the leaves of the Musa paradisiaca plant was analyzed. The removal efficiency was analyzed for adsorbent doses in the range of 10 mg-50 mg, uranium ion concentrations from 10 μg/L to 100 μg/L, a pH range of 2-7, and time intervals between 15 min and 60 min. Results indicated that a maximum removal efficiency of 97.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
August 2025
Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, Hunan, China.
MR-1, a Gram-negative bacterium with a significant role in the adsorption and reduction of uranium in wastewater and a quorum-sensing effect, can be used to remove uranium from wastewater. Exogenous signaling molecules (acyl-homoserine lactones, AHLs) can be added to induce the quorum sensing behavior for rapid biofilm formation, thereby improving the removal efficiency of this bacterium for uranium. Extracellular polymeric substances (EPS), as the significant components of biofilm, play a key role in biofilm formation.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, Kgs Lyngby 2800, Denmark. Electronic address:
Efficient and eco-friendly purification of uranium-bearing wastewater is essential for the safety of the water ecosystem and sustainable development of the nuclear energy industry. Although bioelectrochemical systems show great prospect for uranium bioremediation, the uranium removal efficiency is often limited by the ineffective quality of biofilm formation and unsatisfactory electron transfer. Here we propose a rapid self-assembled biofilm formation strategy to construct a sulfate-reducing bacteria-carbon cloth biohybrid cathode (CF-PQ7) modified with cotton-derived carbon fibers for the simultaneous removal of uranium and sulfate.
View Article and Find Full Text PDF