Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient and eco-friendly purification of uranium-bearing wastewater is essential for the safety of the water ecosystem and sustainable development of the nuclear energy industry. Although bioelectrochemical systems show great prospect for uranium bioremediation, the uranium removal efficiency is often limited by the ineffective quality of biofilm formation and unsatisfactory electron transfer. Here we propose a rapid self-assembled biofilm formation strategy to construct a sulfate-reducing bacteria-carbon cloth biohybrid cathode (CF-PQ7) modified with cotton-derived carbon fibers for the simultaneous removal of uranium and sulfate. Electrochemical characterizations show that pyridinic-N and graphitic-N species in highly conductive carbon fibers promote electron transfer at the uranium reduction interface between the biofilm and the electrode by optimized electron transfer dynamics. Moreover, spectroscopic and biofilm analysis demonstrate that a rapid self-assembled electroactive biofilm is formed by coating polyquaternium-7 in situ on the microbial surface to improve the viability and detoxification capacity of the biofilm. Impressively, CF-PQ7 biocathode demonstrates uranium removal efficiency of 93.8 %, achieving a 7.8-fold and 3.9-fold increase compared to sulfate-reducing bacteria and bare electrode, respectively, indicating its promising potential for uranium bioremediation. This work provides a safe, clean, and sustainable uranium reduction strategy and puts forward new perspectives and opportunities for uranium-bearing wastewater remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.139620DOI Listing

Publication Analysis

Top Keywords

electron transfer
16
rapid self-assembled
12
uranium bioremediation
12
self-assembled electroactive
8
uranium
8
uranium-bearing wastewater
8
uranium removal
8
removal efficiency
8
biofilm formation
8
carbon fibers
8

Similar Publications

Electron-Rich Macrocycle-Based Metal-Organic Frameworks for Efficient Photocatalytic CO Reduction.

J Am Chem Soc

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.

View Article and Find Full Text PDF

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF

Exploitation of Biodiversity in Bioeconomy: Examples, Opportunities, and Challenges.

Adv Biochem Eng Biotechnol

September 2025

Institute of Process Engineering in Life Sciences, Electrobiotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.

While bioprocesses using Escherichia coli, Corynebacterium glutamicum, various species of Bacillus, lactic acid bacteria, Clostridia, the yeasts Saccharomyces cerevisiae and Pichia pastoris, fungi such as Aspergillus niger, and Chinese hamster ovary cells are well established, the high level of microbial diversity has not yet been exploited industrially. However, the use of alternative organisms has the potential to significantly expand the process window of bioprocesses. These extensions include the use of alternative substrates (e.

View Article and Find Full Text PDF

Real-Space Quantitative Molecular Analysis at Single-Molecule Resolution.

J Am Chem Soc

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu P. R. China.

Advances in molecular analysis and characterization techniques should revolutionize the methods for scientific exploration across physics, chemistry, and biology, fundamentally overturning our understanding of interactions and processes that govern molecular behavior at the microscopic level. Currently, the absence of a molecular analysis method that can both quantify molecules and achieve single-molecule spatial resolution hinders our study of complex molecular systems in sorption and catalysis. Here, we propose a quantitative analysis strategy for small molecules confined in ZSM-5, a zeolite material extensively used in catalysis and gas separation, based on low-dose transmission electron microscopy.

View Article and Find Full Text PDF

The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.

View Article and Find Full Text PDF