Electron-Rich Macrocycle-Based Metal-Organic Frameworks for Efficient Photocatalytic CO Reduction.

J Am Chem Soc

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs. Remarkably, the MOF designated as Co-C[3]PTZ-MOF─constructed using the more electron-donating calix[3]phenothiazine ligand (C[3]PTZ-COOH)─exhibited superior photoresponse and enhanced charge-transport characteristics. This optimized material achieved an exceptional CO photoreduction initial efficiency of 17,800 μmol g h with 81% CO selectivity. The outstanding photocatalytic performance originates from the strong electron-donating nature of the calix[3]arene-based ligands, which facilitated efficient LMCT processes. This study provides valuable insights for designing high-performance photocatalysts through rational engineering of macrocyclic ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c09419DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
lmct processes
8
macrocyclic ligands
8
electron-rich macrocycle-based
4
macrocycle-based metal-organic
4
frameworks efficient
4
efficient photocatalytic
4
photocatalytic reduction
4
reduction metal-organic
4
frameworks mofs
4

Similar Publications

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.

View Article and Find Full Text PDF

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF

Separation of xylene isomers, serving as indispensable feedstock in the petrochemical industry, is important but significantly challenging due to their similar physicochemical properties. With readily tunable network structures and chemical functionalities, metal-organic frameworks (MOFs) are promising for separation and many other potential applications. Here, we computationally design 150 lanthanide-based MOFs with one-dimensional triangular nanopores by varying metal compositions.

View Article and Find Full Text PDF