Am J Physiol Cell Physiol
February 2025
Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, -overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation.
View Article and Find Full Text PDFThe reaction process of petrochemical sludge under hydrothermal conditions was investigated to explore the feasibility of its disposal using hydrothermal treatment. Experiments were conducted in an autoclave for 30 min at 350-450 °C. During the hydrothermal treat of petrochemical sludge, 44.
View Article and Find Full Text PDFAm J Clin Exp Urol
November 2014
Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood.
View Article and Find Full Text PDFMicroRNAs are known to play regulatory roles in gene expression associated with cancer development. We analyzed levels of the microRNA miR-24 in patients with breast carcinoma and found that miR-24 was higher in breast carcinoma samples than in benign breast tissues. We generated constructs expressing miR-24 and studied its functions using both in vitro and in vivo techniques.
View Article and Find Full Text PDFNodal is a member of the transforming growth factor-β (TGF-β) superfamily that plays critical roles during embryogenesis. Recent studies in ovarian, breast, prostate, and skin cancer cells suggest that Nodal also regulates cell proliferation, apoptosis, and invasion in cancer cells. However, it appears to exert both tumor-suppressing and tumor-promoting effects, depending on the cell type.
View Article and Find Full Text PDFMethods Mol Biol
December 2010
In eukaryotes, regulation of signaling mediators/effectors in the nucleus is one of the principal mechanisms that govern duration and strength of signaling. Smads are a family of structurally related intracellular proteins that serve as signaling effectors for transforming growth factor beta (TGF-beta) and TGF-beta-related proteins. Accumulating evidence demonstrates that Smads possess intrinsic nucleocytoplasmic shuttling capacity, which enables them to transmit TGF-beta signals from cell membrane to nucleus.
View Article and Find Full Text PDFId1 is a member of the inhibitor of differentiation (Id) protein family that regulates a wide range of cell functions. Previous studies have shown that expression of the Id1 gene is down-regulated by TGF-beta in epithelial cells, whereas it is up-regulated by BMP in a variety of cell types. During our study of the biological function of TGF-beta1, we found that Id1 can be strongly up-regulated by TGF-beta1 in the human mammary gland epithelial cell line MCF10A.
View Article and Find Full Text PDFSRC-3/AIB1 is a master growth coactivator and oncogene, and phosphorylation activates it into a powerful coregulator. Dephosphorylation is a potential regulatory mechanism for SRC-3 function, but the identity of such phosphatases remains unexplored. Herein, we report that, using functional genomic screening of human Ser/Thr phosphatases targeting SRC-3's known phosphorylation sites, the phosphatases PDXP, PP1, and PP2A were identified to be key negative regulators of SRC-3 transcriptional coregulatory activity in steroid receptor signalings.
View Article and Find Full Text PDFJ Biol Chem
November 2008
Cdk9 is the catalytic subunit of a general RNA polymerase II elongation factor known as positive transcription elongation factor b (P-TEFb). The kinase function of P-TEFb requires phosphorylation of Thr-186 in the T-loop of Cdk9 to allow substrates to access the catalytic core of the enzyme. To identify human phosphatases that dephosphorylate the T-loop of Cdk9, we used a Thr-186-phosphospecific antiserum to screen a phosphatase expression library.
View Article and Find Full Text PDFDev Cell
September 2006
To assess whether Smad signaling affects skin development, we generated transgenic mice in which a Smad antagonist, Smad7, was induced in keratinocytes, including epidermal stem cells. Smad7 transgene induction perturbed hair follicle morphogenesis and differentiation, but accelerated sebaceous gland morphogenesis. Further analysis revealed that independent of its role in anti-Smad signaling, Smad7 bound beta-catenin and induced beta-catenin degradation by recruiting an E3 ligase, Smurf2, to the Smad7/beta-catenin complex.
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) are secreted polypeptides belonging to the transforming growth factor-beta (TGF-beta) superfamily that activates a broad range of biological responses in the metazoan organism. The BMP-initiated signaling pathway is under tight control by processes including regulation of the ligands, the receptors, and the key downstream intracellular effector Smads. A critical point of control in BMP signaling is the phosphorylation of Smad1, Smad5, and Smad8 in their C-terminal SXS motif.
View Article and Find Full Text PDFTGFbeta signaling controls diverse normal developmental processes and pathogenesis of diseases including cancer and autoimmune and fibrotic diseases. TGFbeta responses are generally mediated through transcriptional functions of Smads. A key step in TGFbeta signaling is ligand-induced phosphorylation of receptor-activated Smads (R-Smads) catalyzed by the TGFbeta type I receptor kinase.
View Article and Find Full Text PDFSmads, key effectors of transforming growth factor (TGF)-beta, activin, and bone morphogenetic protein (BMP) signaling, regulate gene expression and interact with coactivators and corepressors that modulate Smad activity. The corepressor Evi-1 exerts its oncogenic effects by repressing TGF-beta/Smad3-mediated transcription, thereby blocking TGF-beta-induced growth arrest. Because Evi-1 interacts with the highly conserved MH2 domain of Smad3, we investigated the physical and functional interaction of Evi-1 with Smad1 and Smad2, downstream targets of BMP and activin signaling, respectively.
View Article and Find Full Text PDFMol Cell Biol
September 2004
Smad4/DPC4, a common signal transducer in transforming growth factor beta (TGF-beta) signaling, is frequently inactivated in human cancer. Although the ubiquitin-proteasome pathway has been established as one mechanism of inactivating Smad4 in cancer, the specific ubiquitin E3 ligase for ubiquitination-mediated proteolysis of Smad4 cancer mutants remains unclear. In this report, we identified the SCFSkp2 complex as candidate Smad4-interacting proteins in an antibody array-based screen and further elucidated the functions of SCFSkp2 in mediating the metabolic instability of cancer-derived Smad4 mutants.
View Article and Find Full Text PDFMol Cell Biol
December 2003
Smad6 and Smad7 are inhibitory Smads induced by transforming growth factor beta-Smad signal transduction pathways in a negative-feedback mechanism. Previously it has been thought that inhibitory Smads bind to the type I receptor and block the phosphorylation of receptor-activated Smads, thereby inhibiting the initiation of Smad signaling. Conversely, few studies have suggested the possible nuclear functions of inhibitory Smads.
View Article and Find Full Text PDFTumor suppressor Smad4/DPC4 is a central intracellular signal transducer for transforming growth factor-beta (TGF-beta) signaling. We recently reported that transcriptional potential of Smad4 was regulated by SUMOylation in transfected HeLa cells (1), but the precise mechanism and function of Smad4 SUMOylation in TGF-beta signaling remain to be elucidated. Here, we describe the regulation of TGF-beta signaling by SUMOylation through the control of Smad4 metabolic stability and subcellular localization.
View Article and Find Full Text PDFThe transcription corepressor CtBP is often recruited to the target promoter via interaction with a conserved PxDLS motif in the interacting repressor. In this study, we demonstrate that CtBP1 was SUMOylated and that its SUMOylation profoundly affected its subcellular localization. SUMOylation occurred at a single Lys residue, Lys428, of CtBP1.
View Article and Find Full Text PDFMAD plays an important role in decapentaplegic (DPP) signaling throughout Drosophila development. Despite a recent study describing the restriction of DPP signaling via putative ubiquitin E3 ligase dSmurf (1), the molecular mechanisms of how dSmurf affects DPP signaling remain unexplored. Toward this goal we demonstrated the degradation of phosphorylated MAD by dSmurf.
View Article and Find Full Text PDFSmads are important intracellular effectors in signaling pathways of the transforming growth factor-beta (TGF-beta) superfamily. Upon activation by TGF-beta, receptor-phosphorylated Smads form a complex with tumor suppressor Smad4/DPC4, and the Smad complexes then are imported into the nucleus. Although diverse pathways regulate the activity and expression of receptor-phosphorylated and inhibitory Smads, cellular factors modulating the activity of the common Smad4 remain unidentified.
View Article and Find Full Text PDF