Publications by authors named "Rajesh Ramakrishnan"

Nlrp2 encodes a protein of the oocyte subcortical maternal complex (SCMC), required for embryo development. We previously showed that loss of maternal Nlrp2 in mice causes subfertility, smaller litters with birth defects, and growth abnormalities in offspring, indicating that Nlrp2 is a maternal effect gene and that all embryos from Nlrp2-deficient females that were cultured in vitro arrested before the blastocysts stage. Here, we used time-lapse microscopy to examine the development of cultured embryos from superovulated Nlrp2-deficient and wild-type mice after in vivo and in vitro fertilization.

View Article and Find Full Text PDF

Gene-environment interactions contribute to the risk for Autism Spectrum Disorder (ASD). Among environmental factors, prenatal exposure to stress may increase the risk for ASD. To examine if there is an interaction between exposure to maternal stress and reduced dosage or loss of Shank3, wild-type (WT), heterozygous (HET) and homozygous (HOM) female mice carrying a deletion of exons four through nine of Shank3 (Shank3ex4-9) were exposed to chronic unpredictable mild stress (CUMS) from prior to conception throughout gestation.

View Article and Find Full Text PDF

Objective: To examine factors that influence uptake of expanded carrier screening (ECS) among women undergoing preconception and prenatal genetic counseling.

Methods: We retrospectively reviewed 500 medical records from women with prenatal or preconception genetic counseling at a prenatal genetic counseling service. We tabulated acceptance of ECS by indication for genetic counseling along with demographic and pregnancy-related factors.

View Article and Find Full Text PDF

Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure.

View Article and Find Full Text PDF

Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, altertoxins V (1) and VI (2) together with the known compounds, altertoxins I (3), II (4), and III (5). The structures of 1 and 2 were determined by detailed spectroscopic analysis and those of 3-5 were established by comparison with reported data.

View Article and Find Full Text PDF

The histone deacetylase inhibitor (HDACi) suberoylanilide hydroxyamic acid (SAHA), also known as vorinostat, has recently been reported to activate latent HIV-1 in patients undergoing antiretroviral therapy. It is possible that SAHA reactivation of latent viruses may involve effects on cellular transcription factors such as positive transcription elongation factor b (P-TEFb), a protein kinase whose core is composed of CDK9 and Cyclin T1. P-TEFb is recruited by the HIV-1 Tat protein to activate productive RNA polymerase II elongation of the integrated provirus.

View Article and Find Full Text PDF
Article Synopsis
  • Most current HIV-1 treatments are chemically synthesized antiretroviral drugs that can cause viral resistance and significant toxic effects.
  • Endophytic fungi, which have a symbiotic relationship with plants, produce natural metabolites that could be useful for HIV-1 drug discovery.
  • Research on extracts from desert plant-associated fungi revealed four compounds that effectively inhibit HIV-1 replication, showcasing their potential as new antiviral agents.
View Article and Find Full Text PDF

Background: HIV-1 Tat activates RNA Polymerase II (RNAP II) elongation of the integrated provirus by recruiting a protein kinase known as P-TEFb to TAR RNA at the 5' end of nascent viral transcripts. The catalytic core of P-TEFb contains CDK9 and Cyclin T1 (CCNT1). A human endogenous complexome has recently been described - the set of multi-protein complexes in HeLa cell nuclei.

View Article and Find Full Text PDF

Background: Processive elongation of the integrated HIV-1 provirus is dependent on recruitment of P-TEFb by the viral Tat protein to the viral TAR RNA element. P-TEFb kinase activity requires phosphorylation of Thr186 in the T-loop of the CDK9 subunit. In resting CD4+T cells, low levels of T-loop phosphorylated CDK9 are found, which increase significantly upon activation.

View Article and Find Full Text PDF

Productive transcription of the integrated HIV-1 provirus is restricted by cellular factors that inhibit RNA polymerase II elongation. The viral Tat protein overcomes this by recruiting a general elongation factor, P-TEFb, to the TAR RNA element that forms at the 5' end of nascent viral transcripts. P-TEFb exists in multiple complexes in cells, and its core consists of a kinase, Cdk9, and a regulatory subunit, either Cyclin T1 or Cyclin T2.

View Article and Find Full Text PDF

Nasal NK/T cell lymphomas (NKTCL) are a subset of aggressive Epstein-Barr virus (EBV)-associated non-Hodgkin's lymphomas. The role of EBV in pathogenesis of NKTCL is not clear. Intriguingly, EBV encodes more than 40 microRNAs (miRNA) that are differentially expressed and largely conserved in lymphocryptoviruses.

View Article and Find Full Text PDF

Background: The elongation phase, like other steps of transcription by RNA Polymerase II, is subject to regulation. The positive transcription elongation factor b (P-TEFb) complex allows for the transition of mRNA synthesis to the productive elongation phase. P-TEFb contains Cdk9 (Cyclin-dependent kinase 9) as its catalytic subunit and is regulated by its Cyclin partners, Cyclin T1 and Cyclin T2.

View Article and Find Full Text PDF

Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop.

View Article and Find Full Text PDF

The cellular kinase complex P-TEFb is composed of Cdk9 and cyclin T, and it is required for expression of most protein-coding genes by RNAP II. Cdk9 has been shown recently to be activated in cis by autophosphorylation of Thr186 in its T-loop. Using a phosphospecific Cdk9 antibody, we examined the level of Cdk9 T-loop phosphorylation in resting and activated CD4(+) T lymphocytes.

View Article and Find Full Text PDF

We have recently shown an increased HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells compared with adult cells, which could be due to HIV-1 integration as it targets active host genes. Here we have characterized 468 HIV-1 integration sites within cord and adult blood T-lymphocytes and monocyte-derived macrophages (MDM) from five donors. Several functional classes of genes were identified by gene ontology to be over represented, including genes for cellular components, maintenance of intracellular environment, enzyme regulation, cellular metabolism, catalytic activity and cation transport.

View Article and Find Full Text PDF

Cdk9 is the catalytic subunit of a general RNA polymerase II elongation factor known as positive transcription elongation factor b (P-TEFb). The kinase function of P-TEFb requires phosphorylation of Thr-186 in the T-loop of Cdk9 to allow substrates to access the catalytic core of the enzyme. To identify human phosphatases that dephosphorylate the T-loop of Cdk9, we used a Thr-186-phosphospecific antiserum to screen a phosphatase expression library.

View Article and Find Full Text PDF

HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4(+) T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) sequences were characterized from six mother-infant pairs following vertical transmission. The LTR sequences exhibited a low degree of heterogeneity within mothers, within infants, and between epidemiologically linked mother-infant pairs. However, LTR sequences were more heterogeneous between epidemiologically unlinked individuals compared with linked mother-infant pairs.

View Article and Find Full Text PDF

Background: Several subtypes of HIV-1 circulate in infected people worldwide, including subtype B in the United States and subtype C in Africa and India. To understand the biological properties of HIV-1 subtype C, including cellular tropism, virus entry, replication efficiency and cytopathic effects, we reciprocally inserted our previously characterized envelope V3-V5 regions derived from 9 subtype C infected patients from India into a subtype B molecular clone, pNL4-3. Equal amounts of the chimeric viruses were used to infect T-lymphocyte cell lines (A3.

View Article and Find Full Text PDF

We have characterized the primary RRE sequences of HIV-1, including in vivo genetic variation and functional motifs required for Rev-RRE interactions as well as evaluated the RNA secondary structures of RRE derived from five mother-infant pairs following vertical transmission. Multiple (157) RRE sequences derived from mother-infant pairs showed that primary nucleotide sequences of RRE were highly conserved with a low degree of viral heterogeneity following vertical transmission. We found that the RRE sequences from mothers and infants folded and retained all the essential stem-loop formation required for Rev-RRE interactions.

View Article and Find Full Text PDF

The majority of HIV-1-infected neonates and infants have a higher level of viremia and develop AIDS more rapidly than infected adults, including differences seen in clinical manifestations. To determine the mechanisms of HIV-1 infection in neonates vs. adults, we compared the replication kinetics of HIV-1 in neonatal (cord) and adult blood T lymphocytes and monocyte-derived macrophages (MDM) from seven different donors.

View Article and Find Full Text PDF

Background: HIV-1 envelope gp41 is a transmembrane protein that promotes fusion of the virus with the plasma membrane of the host cells required for virus entry. In addition, gp41 is an important target for the immune response and development of antiviral and vaccine strategies, especially when targeting the highly variable envelope gp120 has not met with resounding success. Mutations in gp41 may affect HIV-1 entry, replication, pathogenesis, and transmission.

View Article and Find Full Text PDF

Background: The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) plays a pivotal role in the viral lifecycle: including encapsulating the viral genome, aiding in strand transfer during reverse transcription, and packaging two copies of the viral genome into progeny virions. Another gag gene product, p6, plays an integral role in successful viral budding from the plasma membrane and inclusion of the accessory protein Vpr within newly budding virions. In this study, we have characterized the gag NC and p6 genes from six mother-infant pairs following vertical transmission by performing phylogenetic analysis and by analyzing the degree of genetic diversity, evolutionary dynamics, and conservation of functional domains.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) rev exons 1 and 2 sequences were analyzed from six mother-infant pairs following perinatal transmission. The rev open reading frame was maintained with a frequency of 93.96% in six mother-infant pairs' sequences.

View Article and Find Full Text PDF