Spectrochim Acta A Mol Biomol Spectrosc
December 2025
Triphenylmethane (TPM) dyes, as one of largest classes of commercial colorants, have been widely used in industry such as dying processes, antifungal agents in aquaculture, cell staining and analytical chemistry. Here a simple triphenylmethane derivatives showing ultralong room temperature phosphorescence (RTP) in air was described. Tris(2-methoxyphenyl)methane (TMPM) displays ultralong lifetimes of 0.
View Article and Find Full Text PDFBenzene is the simplest and the most basic building block for the construction of π conjugated systems, which are widely used in various fields from fluorescent (FL) dyes to optoelectronic displays. However, achieving the red room-temperature phosphorescence (RTP) from single benzene is still challenging. Utilizing the p-π conjugation, herein, we report a single benzene-based push-pull system with red RTP under ambient condition.
View Article and Find Full Text PDFThe occurrence and progression of blood vessels plays a pivotal role in different stages of tumor development, while current imaging techniques exhibit limited sensitivity to capture the dynamic changes of vasculature at different tumor stages. This drawback hinders the comprehensive understanding of the tumor microenvironment, thereby impeding the development of efficacious therapeutic strategies. Herein, a high-resolution three-dimensional (3D) imaging technology is developed for mapping and analyzing vasculatures at different tumor stages using HA@TANP, a supramolecular assembly of far-red fluorescence nanoparticles with aggregation-induced emission (AIE), compatible with tissue clearing.
View Article and Find Full Text PDFSoft Matter
February 2025
We report that aromatic amphiphiles based on cruciform aromatic segments self-assemble into 2-D sheet structures in aqueous environments. Notably, the aromatic amphiphile based on a pyrene unit generates fluorescence-switching 2-D sheet structures. In a pH-neutral condition, the sheets show strong excimer emission.
View Article and Find Full Text PDFChemistry
January 2025
Triphenylmethyl-based compounds such as rhodamines and fluoresceine representing an old and well-known class of triphenylmethane dyes, are widely used in fluorescent labeling of bioimaging. Inspired by ultralong room temperature phosphorescence of triphenylphosphine derivatives, herein we report a methoxy substituted triarylmethanol ((4-methoxyphenyl)diphenylmethanol, LJW-1) exhibits ultralong room temperature phosphorescence (RTP) under ambient condition with afterglows of about 7 seconds. Its multiple C-H ⋅ ⋅ ⋅ π intermolecular interactions, C-H ⋅ ⋅ ⋅ O intermolecular interactions, hydrogen bond and π-π interactions are beneficial for forming rigid environment in the aggregated state which is evidently an important factor in the appearance of excellent RTP.
View Article and Find Full Text PDFOrganic photoluminescent macrocyclic hosts have been widely advanced in many fields. Phosphorescent hosts with the ability to bind organic guests have rarely been reported. Herein, acyclic cucurbituril modified with four carboxylic acids (ACB-COOH) is mined to present uncommon purely organic room-temperature phosphorescence (RTP) at 510 nm with a lifetime of 1.
View Article and Find Full Text PDFAqueous supramolecular long-lived near-infrared (NIR) material is highly attractive but still remains great challenge. Herein, we report cucurbit[8]uril confinement-based secondary coassembly for achieving NIR phosphorescence energy transfer in water, which is fabricated from dicationic dodecyl-chain-bridged 4-(4-bromophenyl)-pyridine derivative (G), cucurbit[8]uril (CB[8]), and polyelectrolyte poly(4-styrene-sulfonic sodium) (PSS) via the hierarchical confinement strategy. As compared to the dumbbell-shaped G, the formation of unprecedented linear polypseudorotaxane G⊂CB[8] with nanofiber morphology engenders an emerging phosphorescent emission at 510 nm due to the macrocyclic confinement effect.
View Article and Find Full Text PDFConstruction of new system and exploration of new approach are of great importance for the improvement of their photophysical properties to meet the growing various uses of phosphorescent materials. Triphenylmethane (TPM), composed only of carbon and hydrogen, exhibits excellent color tunable phosphorescence in air, with ultralong lifetime (836 ms), and wide color-tunable range (from cyan to green, then to yellow and finally to orange, 525 nm-616 nm). Through careful comparison with the single crystal diffraction structure of tetraphenylmethane (TTPM) and theoretical calculation analysis, we believe that various clusters formed through space interactions are crucial for color-tunable phosphorescence.
View Article and Find Full Text PDFNat Rev Chem
December 2023
Phosphorescence energy transfer systems have been applied in encryption, biomedical imaging and chemical sensing. These systems exhibit ultra-large Stokes shifts, high quantum yields and are colour-tuneable with long-wavelength afterglow fluorescence (particularly in the near-infrared) under ambient conditions. This review discusses triplet-to-singlet PRET or triplet-to-singlet-to-singlet cascaded PRET systems based on macrocyclic or assembly-confined purely organic phosphorescence introducing the critical toles of supramolecular noncovalent interactions in the process.
View Article and Find Full Text PDFMacrocyclic confinement-induced supramolecular luminescence materials have important application value in the fields of bio-sensing, cell imaging, and information anti-counterfeiting. Herein, a tunable multicolor lanthanide supramolecular assembly with white light emission is reported, which is constructed by co-assembly of cucurbit[7]uril (CB[7]) encapsulating naphthylimidazolium dicarboxylic acid (G )/Ln (Eu /Tb ) complex and carbon quantum dots (CD). Benefiting from the macrocyclic confinement effect of CB[7], the supramolecular assembly not only extends the fluorescence intensity of the lanthanide complex G /Tb by 36 times, but also increases the quantum yield by 28 times and the fluorescence lifetime by 12 times.
View Article and Find Full Text PDFDue to the unclear mechanism and lack of effective design for color-tunable ultralong organic phosphorescence (UOP) in a single-component molecule, the development of new types of single-component UOP materials with color-tunable property remains challenging. Herein, commercially available triphenylmethylamine-based single-component phosphors featuring color-tunablity and ultralong lifetime (0.56 s) are reported.
View Article and Find Full Text PDFA photo-responsive full-color lanthanide supramolecular switch was constructed from a synthetic 2,6-pyridine dicarboxylic acid (DPA)-modified pillar[5]arene (H) complexing with lanthanide ion (Ln = Tb and Eu) and dicationic diarylethene derivative (G) through a noncovalent supramolecular assembly. Benefiting from the strong complexation between DPA and Ln with a 3 : 1 stoichiometric ratio, the supramolecular complex H/Ln presented an emerging lanthanide emission in the aqueous and organic phase. Subsequently, a network supramolecular polymer was formed by H/Ln further encapsulating dicationic G the hydrophobic cavity of pillar[5]arene, which greatly contributed to the increased emission intensity and lifetime, and also resulted in the formation of a lanthanide supramolecular light switch.
View Article and Find Full Text PDFChem Commun (Camb)
February 2023
An injectable polysaccharide supramolecular hydrogel was successfully fabricated from opened D-glucopyranosyl β-cyclodextrin with four aldehyde groups (ACD) cross-linked with biomacromolecule chitosan (CS), which was not only beneficial to the clustering-triggered emission of CS with high quantum yield (32.25%), but also could co-assemble with a first stage acceptor triphenylamine derivative (TPA) and encapsulate Cyanine 5 (Cy5) or Nile blue (NiB) achieving supramolecular cascade energy transfer from the cross-linked polymer to the dyes, leading to fluorescence emission at 673 nm or 680 nm, and could be further applied in cell imaging.
View Article and Find Full Text PDFACS Nano
November 2022
The high-efficiency transition metal-free electrocatalytic nitrate reduction reaction (NORR) for ammonia synthesis has received more attention because of its green and environmentally friendly characteristics. Here, we report an efficient electrochemical NH synthesis directly from purely organic macrocyclic compounds α-, β-, and γ-cyclodextrins (CDs)-catalyzed transition metal-free electroreduction of nitrate under ambient conditions. In comparison with α-, and β-CDs, parent γ-CD presented uncommon catalytic performance with a relatively higher NH yield that can reach up to 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2022
Herein, we reported solid supramolecular bromonaphthylpyridinium polymers (P-BrNp), which exhibit tunable phosphorescence emission in the amorphous state enabled by sulfobutylether-β-cyclodextrin (SBE-β-CD) and diarylethene derivatives. The monomer BrNp gave single fluorescence emission at 490 nm, while an apparent room-temperature phosphorescence (RTP) at 550 nm emerged for P-BrNp copolymers with various feed ratios. Through fluorescence-phosphorescence dual emission, P-BrNp-0.
View Article and Find Full Text PDFBiomacromolecules
September 2022
The construction of supramolecular multivalent assemblies with unique photoluminescence behaviors and biological functions has become a research hot spot recently in the biomaterial field. Herein, we report an adaptive supramolecular assembly via a multivalent co-assembly strategy prepared in two stages by using an adamantane-connected pyrenyl pyridinium derivative (APA2), sulfonated aluminum phthalocyanine (PcS), and folic acid-modified β-cyclodextrin (FA-CD) for efficient dual-organelle targeted photodynamic cancer cell ablation. Benefiting from π-π and electrostatic interactions, APA2 and PcS could first assemble into non-fluorescent irregular nanoaggregates because of the heterodimer aggregation-induced quenching and then secondarily assemble with FA-CD to afford targeted spherical nanoparticles (NPs) with an average diameter of around 50 nm, which could be specifically taken up by HeLa cancer cells through endocytosis in comparison with 293T normal cells.
View Article and Find Full Text PDFThe construction of lanthanide multicolor luminescent materials with tunable photoluminescence properties has been developed as one of the increasingly significant topics and shown inventive applications in miscellaneous fields. However, fabricating such materials based on synergistically assembly-induced emission rather than simple blending of different fluorescent dyes together still remains a challenge. Herein, we report a europium-based noncovalent polymer with tunable full-color emission, which is constructed from the 2,6-pyridinedicarboxylic acid-bearing bromophenylpyridinium salt.
View Article and Find Full Text PDFNoncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and β-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly G⊂CB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7].
View Article and Find Full Text PDFThe optimization of molecular conformation and aggregation modes is of great significance in creation of new luminescent materials for biochemical research and medical diagnostics. Herein, a highly emissive macrocycle (1) is reported, which is constructed by the cyclization reaction of triphenylamine with benzyl bromide and exhibits very distinctive photophysical performance both in aqueous solution and the solid state. Structural analysis reveals that the 1 can form self-interpenetrated complex and emit bright yellow fluorescence in the crystal lattice.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2022
A two-step sequential phosphorescence harvesting system with ultralarge Stokes shift and near-infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2-diaminocyclohexan-derived 6-bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close-packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.
View Article and Find Full Text PDFMacrocyclic supramolecular coassembly is the current research hotspot for tumor treatment. Herein, we report a multivalent supramolecular coassembly strategy, which not only acquires long-time phosphorescent labeling of mitochondrial aggregation but also strongly enhances chemotherapeutic efficiency against drug-resistant tumors. The mitochondrial aggregation depends on cucurbit[8]uril-mediated cross-linkage of the hyaluronic acid polymer grafted by 4-bromophenylpyridium and mitochondrion-targeting peptide (HABMitP) residing on the mitochondria, taking advantage of the 2:1 homoternary host-guest complexation between cucurbit[8]uril and 4-bromophenylpyridium with an extraordinary binding constant (6.
View Article and Find Full Text PDFDespite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G .
View Article and Find Full Text PDFRegulation of physio-chemical properties and reaction activities via noncovalent methodology has become one of increasingly significant topics in supramolecular chemistry and showed inventive applications in miscellaneous fields. Herein, we demonstrate that sulfonated crown ether can form very stable host-guest complexes with a series of push-pull-type photosensitizers, eventually leading to the dramatic fluorescence enhancement in visible and near-infrared regions. Meanwhile, severe suppression in singlet oxygen ( O ) production is found, mainly due to the higher energy barriers between the excited single and triple states upon host-guest complexation.
View Article and Find Full Text PDFMultivalent supramolecular assemblies have recently attracted extensive attention in the applications of soft materials and cell imaging. Here, we report a novel multivalent supramolecular assembly constructed from 4-(4-bromophenyl)pyridine-1-ium bromide modified hyaluronic acid (HABr), cucurbit[8]uril (CB[8]) and laponite® clay (LP), which could emit purely organic room-temperature phosphorescence (RTP) with a phosphorescence lifetime of up to 4.79 ms in aqueous solution multivalent supramolecular interactions.
View Article and Find Full Text PDF