Nat Med
August 2025
In the context of an increasing need for clinical assessments of foundation models, we developed EyeFM, a multimodal vision-language eyecare copilot, and conducted a multifaceted evaluation, including retrospective validations, multicountry efficacy validation as a clinical copilot and a double-masked randomized controlled trial (RCT). EyeFM was pretrained on 14.5 million ocular images from five imaging modalities paired with clinical texts from global, multiethnic datasets.
View Article and Find Full Text PDFCell Rep Med
July 2025
Systemic lupus erythematosus (SLE) is a serious autoimmune disorder predominantly affecting women. However, screening for SLE and related complications poses significant challenges globally, due to complex diagnostic criteria and public unawareness. Since SLE-related retinal involvement could provide insights into disease activity and severity, we develop a deep learning system (DeepSLE) to detect SLE and its retinal and kidney complications from retinal images.
View Article and Find Full Text PDFNat Med
July 2025
Adolescents with obesity face numerous health risks and encounter barriers that lead to physical inactivity. We developed a virtual reality sports system, named REVERIE (Real-World Exercise and VR-Based Exercise Research in Education), which used deep reinforcement learning to train transformer-based virtual coaching agents, offering immersive and effective sports guidance, with biomechanical performance comparable to real-world physical sports. We integrated REVERIE into a randomized controlled trial involving an 8-week intervention in adolescents with excess body weight (n = 227).
View Article and Find Full Text PDFNat Biomed Eng
June 2025
Current brain imaging to detect silent brain infarctions (SBIs) is not feasible for the general population. Here, to overcome this challenge, we developed a retinal image-based deep learning system, DeepRETStroke, to detect SBI and refine stroke risk. We use 895,640 retinal photographs to pretrain the DeepRETStroke system, which encodes a domain-specific foundation model for representing eye-brain connections.
View Article and Find Full Text PDFLancet Digit Health
May 2025
JAMA Ophthalmol
November 2024
Importance: Myopic maculopathy (MM) is a major cause of vision impairment globally. Artificial intelligence (AI) and deep learning (DL) algorithms for detecting MM from fundus images could potentially improve diagnosis and assist screening in a variety of health care settings.
Objectives: To evaluate DL algorithms for MM classification and segmentation and compare their performance with that of ophthalmologists.
NPJ Digit Med
August 2024
The increasing prevalence of myopia worldwide presents a significant public health challenge. A key strategy to combat myopia is with early detection and prediction in children as such examination allows for effective intervention using readily accessible imaging technique. To this end, we introduced DeepMyopia, an artificial intelligence (AI)-enabled decision support system to detect and predict myopia onset and facilitate targeted interventions for children at risk using routine retinal fundus images.
View Article and Find Full Text PDFNat Med
October 2024
Unlabelled: vegetables exhibit pronounced heterosis; nevertheless, investigations on fertility-related genes are scarce. The present study scrutinized a recessive genic male-sterile line, 7-3A, capable of generating a completely sterile population, holding significant promise for flowering Chinese cabbage breeding. By whole-genome resequencing of sterile and fertile plants, the male-sterile gene was confined to approximately 185 kb on chromosome A07, situated between markers C719 and NP10 in var.
View Article and Find Full Text PDFNat Med
February 2024
Diabetic retinopathy (DR) is the leading cause of preventable blindness worldwide. The risk of DR progression is highly variable among different individuals, making it difficult to predict risk and personalize screening intervals. We developed and validated a deep learning system (DeepDR Plus) to predict time to DR progression within 5 years solely from fundus images.
View Article and Find Full Text PDFFront Public Health
November 2022
Artificial intelligence (AI), also known as machine intelligence, is a branch of science that empowers machines using human intelligence. AI refers to the technology of rendering human intelligence through computer programs. From healthcare to the precise prevention, diagnosis, and management of diseases, AI is progressing rapidly in various interdisciplinary fields, including ophthalmology.
View Article and Find Full Text PDF3D architectures have been long harnessed to create lightweight yet strong cellular materials; however, the study regarding how 3D architectures facilitate the design of soft materials is at the incipient stage. Here, we demonstrate that 3D architectures can greatly facilitate the design of an intrinsically stretchable lattice conductor. We show that 3D architectures can be harnessed to enhance the overall stretchability of the soft conductors, reduce the effective density, enable resistive sensing of the large deformation of curved solids, and improve monitoring of a wastewater stream.
View Article and Find Full Text PDF