Liver fibrosis, characterized by excessive extracellular matrix deposition, is a precursor to cirrhosis and hepatocellular carcinoma, and current treatments are often limited by off-target toxicities. We repurposed the liver-targeting chimera (LIVTAC) XZ1606, a novel proteolysis-targeting chimera (PROTAC) conjugated with a triantennary -acetylgalactosamine (tri-GalNAc) moiety, to degrade BRD4 in hepatic stellate cells. , XZ1606 induced potent, dose- and time-dependent BRD4 degradation in LX-2 cells via the ubiquitin-proteasomal pathway after ASGPR-mediated endocytosis, with minimal cytotoxicity in normal hepatocytes.
View Article and Find Full Text PDFAging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then were exposed to the three LCMs for 42 days at doses of 0.
View Article and Find Full Text PDFReal-time monitoring of estrogenic activity in the aquatic environment is a challenging task. Current biosensors face difficulties due to their limited response speed and environmental tolerance, especially for detecting wastewater, the major source of estrogenic compounds in aquatic environments. To address these difficulties, this study developed a single fluorescent protein (FP) -based whole-cell bacterial biosensor named ER-Light, which was achieved by inserting the sensing domain of the estrogen receptor (ER) into the FP Citrine and expressing it in the periplasm of Escherichia coli.
View Article and Find Full Text PDFJ Control Release
October 2024
It has been validated that enhancing crystallinity and passivating the deep-level defect are critical for improving the device performance of kesterite CuZnSn(S,Se) (CZTSSe) solar cells. Coordination chemistry interactions within the Cu-Zn-Sn-S precursor solution play a crucial role in the management of structural defects and the crystallization kinetics of CZTSSe thin films. Therefore, regulating the coordination environment of anion and cation in the precursor solution to control the formation process of precursor films is a major challenge at present.
View Article and Find Full Text PDFRobot-assisted laparoscopic radical prostatectomy (RALP) has emerged as an effective treatment for prostate cancer with obvious advantages. This study aims to identify risk factors related to hypoxemia during the emergence from anesthesia in patients undergoing RALP. A cohort of 316 patients undergoing RALP was divided into two groups: the hypoxemia group (N = 134) and the non-hypoxemia group (N = 182), based on their postoperative oxygen fraction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Kesterite CuZnSn(S,Se) (CZTSSe) has been considered as the most promising absorber material for inorganic thin-film solar cells. Among the three main interfaces in CZTSSe-based solar cells, the CZTSSe/Mo back interface plays an essential role in hole extraction as well as device performance. During the selenization process, the reaction between CZTSSe and Mo is one of the main reasons that lead to a large open circuit voltage () deficit, low short circuit current (), and fill factor.
View Article and Find Full Text PDFGrain boundaries (GBs)-triggered severe non-radiative recombination is recently recognized as the main culprits for carrier loss in polycrystalline kesterite photovoltaic devices. Accordingly, further optimization of kesterite-based thin film solar cells critically depends on passivating the grain interfaces of polycrystalline Cu ZnSn(S,Se) (CZTSSe) thin films. Herein, 2D material of graphene is first chosen as a passivator to improve the detrimental GBs.
View Article and Find Full Text PDFSolar cells based on emerging kesterite CuZnSn(S,Se) (CZTSSe) materials have reached certified power conversion efficiency (PCE) as high as 13.6%, showing great potential in the next generation of photovoltaic technologies because of their earth-abundant, tunable direct bandgap, high optical absorption coefficient, environment-friendly, and low-cost properties. The predecessor of CZTSSe is Cu(In,Ga) Se (CIGS), and the highest PCE of CIGS fabricated by the vacuum method is 23.
View Article and Find Full Text PDFThe main bottleneck in the development of kesterite CuZnSn(S,Se) (CZTSSe) solar cells is their very low due to severe carrier recombination. Specifically, due to the poor defect environment and unfavorable band structure, carrier recombination at the front interface is considered to be one of the most serious issues. Thus, to reduce the interface recombination and deficit, we propose a convenient and effective strategy for Cd gradient doping near the front interface during selenization.
View Article and Find Full Text PDFSolution processing of Cu(In,Ga)Se (CIGS) absorber is a highly promising strategy for a cost-effective CIGS photovoltaic device. However, the device performance of solution-processed CIGS solar cells is still hindered by the severe non-radiative recombination resulting from deep defects and poor crystal quality. Here, a simple and effective precursor film engineering strategy is reported, where Cu-rich (CGI >1) CIGS layer is incorporated into the bottom of the CIGS precursor film.
View Article and Find Full Text PDFFront Aging Neurosci
June 2022
Background: Postoperative cognitive dysfunction (POCD) is a common complication characterized by a significant cognitive decline. Increasing evidence suggests an association between the pathogenesis of POCD and Alzheimer's disease (AD). However, a comprehensive understanding of their relationships is still lacking.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
The kesterite CuZnSn(S,Se) (CZTSSe) solar cells have shown a continuous rise in power conversion efficiencies in the past years. However, the encountered interfacial problems with respect to charge recombination and extraction losses at the CdS/CZTSSe heterojunction still hinder their further development. In this work, an additional plasmonic local electric field is imposed into the CdS/CZTSSe interface through the electrostatic assembly of a two-dimensional (2D) ordered Au@SiO NP array onto an aminosilane-modified surface absorber.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Indium doping of cadmium sulfide (CdS) by chemical bath deposition (CBD) can be an efficient strategy to boost the CIGSSe efficiency. However, limited by the extremely low solubility of InS, it is difficult to increase the In doping contents and inhibit the band energy-level regulation for CdS through the traditional CBD process. In this work, we perform a novel CBD method to prepare an indium-doped CdS (In:CdS) buffer, in which the indium source is sequentially slowly added in the growing aqueous solution.
View Article and Find Full Text PDFBackground: Lactic acidosis is often seen in lung transplantation (LTx). Postoperative lactate is frequently associated with poor outcome in postoperative and critically ill patients. Our aim was to evaluate the predictive value of postoperative peak lactate levels within 72 h of LTx for 30-day and late mortality.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Although the traditional Cu-poor architecture addresses many limitations for CuZnSn(S,Se) solar cells, its further development still encounters a bottleneck in terms of efficiency, primarily arising from the inferior charge transport within the quasineutral region and enlarged recombination at back contact. On the contrary, the electrical benign kesterite compound with higher Cu content may compensate for these shortages, but it will degrade device performance more pronouncedly at front contact because of the Fermi level pinning and more electric shunts. Based on the electric disparities on their independent side, in this work, we propose a new status of Cu component by exploring a large grain/fine grain/large grain trilayer architecture with higher Cu content near back contact and lower Cu content near front contact.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2020
The one-dimensional photovoltaic absorber material SbS requires crystal orientation engineering to enable efficient carrier transport. In this work, we adopted the vapor transport deposition (VTD) method to fabricate vertically aligned SbS on a CdS buffer layer. Our work shows that such a preferential vertical orientation arises from the sulfur deficit of the CdS surface, which creates a beneficial bonding environment between exposed Cd dangling bonds and S atoms in the SbS molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
Material crystallinity is the overriding factor in the determination of the photoelectric properties of absorber materials and the overall performance of the photovoltaic device. Nevertheless, in the CuZnSn(S,Se) (CZTSSe) photovoltaic device, the bilayer or trilayer structure for the absorber has been broadly observed, which is generally harmful to the cell performance because the probability of photogenerated carrier recombination at grain boundaries significantly increased. Herein, our experiment reveals that the application of anions to a new family of (Cu,Ag)ZnSn(S,Se) (CAZTSSe) materials leads to an increase in grain size and crystallinity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
Cu(In,Ga)Se (CIGS) is considered a promising photovoltaics material due to its excellent properties and high efficiency. However, the complicated deep defects (such as In or Ga) in the CIGS layer hamper the development of polycrystalline CIGS solar cells. Numerous efforts have been employed to passivate these defects which distributed in the grain boundary and the CIGS/CdS interface.
View Article and Find Full Text PDFThe recent emerging progress of quantum dot ink (QD-ink) has overcome the complexity of multiple-step colloidal QD (CQD) film preparation and pronouncedly promoted the device performance. However, the detrimental hydroxyl (OH) ligands induced from synthesis procedure have not been completely removed. Here, a halide ligand additive strategy was devised to optimize QD-ink process.
View Article and Find Full Text PDFNanomicro Lett
January 2017
Comparing with hot researches in absorber layer, window layer has attracted less attention in PbS quantum dot solar cells (QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on. Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance.
View Article and Find Full Text PDFOrganolead triiodide perovskite (CH3NH3PbI3) as a light-sensitive material has attracted extensive attention in optoelectronics. The reported perovskite photodetectors (PDs) mainly focus on the individual, which limits their spatial imaging applications. Uniform perovskite networks combining transparency and device performance were synthesized on poly(ethylene terephthalate) (PET) by controlling perovskite crystallization.
View Article and Find Full Text PDF