Publications by authors named "Shan Chung"

The blood-brain barrier (BBB) restricts efficient penetration of systemically delivered therapeutic antibodies into the brain, limiting the development of this class of drugs to treat neurodegenerative diseases. Here we demonstrate that the neonatal Fc receptor (FcRn), which is highly expressed at the BBB, can be used to facilitate IgG transport to the brain. Engineering of the antibody Fc region to promote binding to FcRn at neutral pH enhances antibody transcytosis in a cellular model.

View Article and Find Full Text PDF

The complex compositional space of high entropy alloys (HEAs) has shown a great potential to reduce the cost and further increase the catalytic activity for hydrogen evolution reaction (HER) by compositional optimization. Without uncovering the specifics of the HER mechanism on a given HEA surface, it is unfeasible to apply compositional modifications to enhance the performance and save costs. In this work, a combination of density functional theory and Bayesian machine learning is used to demonstrate the unique catalytic mechanism of IrPdPtRhRu HEA catalysts for HER.

View Article and Find Full Text PDF

The search for new materials can be laborious and expensive. Given the challenges that mankind faces today concerning the climate change crisis, the need to accelerate materials discovery for applications like water-splitting could be very relevant for a renewable economy. In this work, we introduce a computational framework to predict the activity of oxygen evolution reaction (OER) catalysts, in order to accelerate the discovery of materials that can facilitate water splitting.

View Article and Find Full Text PDF
Article Synopsis
  • Sialic acid (SA) plays a vital role in protecting glycoproteins like Efmarodocokin alfa (IL-22Fc), which is a fusion protein with complex pharmacokinetic (PK) and pharmacodynamic (PD) properties due to its multiple sialylation sites and variability in distribution.* -
  • The study explored how different levels of SA affect IL-22Fc's behavior in mice, revealing that variations in SA significantly influence drug clearance and distribution, and introduced a novel mechanism where reduced SA might enhance drug uptake by endothelial cells.* -
  • Researchers developed a mathematical PKPD model to better understand and predict the effects of SA on IL-22Fc, concluding that while SA does not directly
View Article and Find Full Text PDF
Article Synopsis
  • MAPPs is a method for evaluating the immunogenicity risk of biotherapeutics by identifying potential T-cell epitopes in the molecules.
  • The method was improved through automation and optimization, enhancing sensitivity and reproducibility while allowing for analysis of fewer cells.
  • The semi-automated MAPPs process produced consistent and reliable data, improving immunogenicity predictions for biotherapeutics with varying rates of immune response.
View Article and Find Full Text PDF

Ocrelizumab (OCREVUS®) is a humanized anti-CD20 monoclonal antibody approved for the treatment of adult patients with relapsing multiple sclerosis (RMS) and primary progressive multiple sclerosis (PPMS). Here, we discuss the strategic and technical considerations needed to develop a robust antibody-dependent cellular cytotoxicity (ADCC)-based neutralizing antibody (NAb) assay to detect anti-ocrelizumab NAb in patients enrolled in the ocrelizumab registered clinical trials. The NAb detection assay consisted of a two-tier assay that included a screening assay and a confirmation assay.

View Article and Find Full Text PDF

Active components with suitable supports are the common paradigm for industrial catalysis, and the catalytic activity usually increases with minimizing the active component size, generating a new frontier in catalysis, single-atom catalysts (SACs). However, further improvement of SACs activity is limited by the relatively low loading of single atoms (SAs, which are heteroatoms for most SACs, i.e.

View Article and Find Full Text PDF

Evolving immunogenicity assay performance expectations and a lack of harmonized neutralizing antibody validation testing and reporting tools have resulted in significant time spent by health authorities and sponsors on resolving filing queries. A team of experts within the American Association of Pharmaceutical Scientists' Therapeutic Product Immunogenicity Community across industry and the Food and Drug Administration addressed challenges unique to cell-based and non-cell-based neutralizing antibody assays. Harmonization of validation expectations and data reporting will facilitate filings to health authorities and are described in this manuscript.

View Article and Find Full Text PDF
Article Synopsis
  • A survey by the Therapeutic Product Immunogenicity community explored immunogenicity risk assessment strategies used by participants before clinical development, spanning 5 years and focusing on in silico algorithms and in vitro assays.
  • Key findings showed a trend towards using advanced tools like high-throughput in silico algorithms, human immune cell-based assays, and proteomics for effective risk assessments.
  • Participants also indicated that these tools not only supported early development phases but also informed clinical strategies and improved bioanalysis efficiency.
View Article and Find Full Text PDF

Background: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1].

Methods: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function.

View Article and Find Full Text PDF

Immunogenicity risk assessment assays are powerful tools that assess the relative immunogenicity of potential biotherapeutics. We detail here the development of a novel assay that measures the degree of antibody internalization by antigen-presenting cells as a predictor of immunogenicity. The assay uses the fluorescence signal from the antibody bound to the outside of the cell as well as inside the cell to determine internalization.

View Article and Find Full Text PDF

Although hydroxychloroquine (HCQ) has long been used to treat autoimmune diseases, its mechanism of action remains poorly understood. In CD4 T-cells, we found that a clinically relevant concentration of HCQ inhibited the mitochondrial antioxidant system triggered by TCR crosslinking, leading to increased mitochondrial superoxide, impaired activation-induced autophagic flux, and reduced proliferation of CD4 T-cells. In antigen-presenting cells, HCQ also reduced constitutive activation of the endo-lysosomal protease legumain and toll-like receptor 9, thereby reducing cytokine production, but it had little apparent impact on constitutive antigen processing and peptide presentation.

View Article and Find Full Text PDF

Antibody-based therapeutics are powerful tools to treat disease. While their mechanism of action (MOA) always involves binding to a specific target via the antibody-binding fragment (Fab) region of the antibody, the induction of immune-mediated effector functions through the fragment crystallizable (Fc) region is a vital aspect of antibody therapeutics targeting tumor cells. Cross-linking of the Fc gamma receptors (FcγRs) via cell-bound antibodies activate immune effector cells, leading to antibody-dependent cellular cytotoxicity via natural killer (NK) cells.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) plays a key role in determining the pharmacokinetic behavior of therapeutic monoclonal antibodies (mAbs). FcRn-mediated intracellular trafficking mechanisms extend the half-lives of mAbs by rescuing them from lysosomal degradation and contribute to their transportation from the vascular space to tissue compartments such as placenta and mucosal surfaces. It is important to characterize the FcRn interactions of therapeutic mAbs and Fc-fusion proteins due to its potential impact on their in vivo pharmacokinetic properties such as clearance and half-life.

View Article and Find Full Text PDF

Evaluation of suitable pharmacokinetic properties is critical for successful development of IgG-based biotherapeutics. The prolonged half-lives of IgGs depend on the intracellular trafficking function of neonatal Fc receptor, which rescues internalized IgGs from lysosomal degradation and recycles them back to circulation. Here, we developed a novel cell-based assay to quantify recycling of monoclonal antibodies in a transwell culture system that uses a cell line that stably expresses human neonatal Fc receptor.

View Article and Find Full Text PDF

Bispecific antibodies (bsAbs) recognize and bind two different targets or two epitopes of the same antigen, making them an attractive diagnostic and treatment modality. Compared to the production of conventional bivalent monospecific antibodies, bsAbs require greater engineering and manufacturing. Therefore, bsAbs are more likely to differ from endogenous immunoglobulins and contain new epitopes that can increase immunogenic risk.

View Article and Find Full Text PDF

Development of antidrug antibodies (ADAs) is an undesirable potential outcome of administration of biotherapeutics and involves the innate and adaptive immune systems. ADAs can have detrimental clinical consequences: they can reduce biotherapeutic efficacy or produce adverse events. Because animal models are considered poor predictors of immunogenicity in humans, assays with human innate and adaptive immune cells are commonly used alternatives that can reveal cell-mediated unwanted immune responses.

View Article and Find Full Text PDF

SARS-CoV-2 has caused a significant ongoing pandemic worldwide. A number of studies have examined the T cell mediated immune responses against SARS-CoV-2, identifying potential T cell epitopes derived from the SARS-CoV-2 proteome. Such studies will aid in identifying targets for vaccination and immune monitoring.

View Article and Find Full Text PDF

Biotherapeutics, which are biologic medications that are natural or bioengineered products of living cells, have revolutionized the treatment of many diseases. However, unwanted immune responses still present a major challenge to their widespread adoption. Many patients treated with biotherapeutics develop antigen-specific anti-drug antibodies (ADAs) that may reduce the efficacy of the therapy or cross-react with the endogenous counterpart of a protein therapeutic, or both.

View Article and Find Full Text PDF

Background And Purpose: Polatuzumab vedotin is an antibody-drug conjugate (ADC) being developed for non-Hodgkin's lymphoma. It contains a humanized anti-CD79b IgG1 monoclonal antibody linked to monomethyl auristatin E (MMAE), an anti-mitotic agent. Polatuzumab vedotin binds to human CD79b only.

View Article and Find Full Text PDF

A cell-based assay employing Madin-Darby canine kidney cells stably expressing human neonatal Fc receptor (FcRn) heavy chain and β2-microglobulin genes was developed to measure transcytosis of monoclonal antibodies (mAbs) under conditions relevant to the FcRn-mediated immunoglobulin G (IgG) salvage pathway. The FcRn-dependent transcytosis assay is modeled to reflect combined effects of nonspecific interactions between mAbs and cells, cellular uptake via pinocytosis, pH-dependent interactions with FcRn, and dynamics of intracellular trafficking and sorting mechanisms. Evaluation of 53 mAbs, including 30 marketed mAb drugs, revealed a notable correlation between the transcytosis readouts and clearance in humans.

View Article and Find Full Text PDF

Antibody-based therapeutics are powerful tools to treat disease. While their mechanism of action (MOA) always involves binding to a specific target via the Fab region of the antibody, the induction of effector functions through the Fc region of the antibody is equally important for antibody therapeutics designed to deplete tumor cells. By binding of the Fc region to Fc gamma receptors (FcγRs) on the surface of immune cells or complement factors, antibody therapeutics exert effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), both of which induce target cell death and aid in the efficacy of treatment.

View Article and Find Full Text PDF

Antibody-dependent cellular cytotoxicity (ADCC) is an important mechanism of action (MOA) of monoclonal antibody (mAb) therapeutics. Target cells opsonized with therapeutic antibody bind and activate FcγR-bearing immune effector cells, resulting in target cell lysis. A key step in mAb drug development is the characterization of ADCC activity for its potential to inform mAb efficacy and safety.

View Article and Find Full Text PDF

Anti-integrin therapy is a new frontline strategy in the treatment of inflammatory bowel diseases (IBD). The anti-β7 integrin antibody etrolizumab is currently being investigated for safety and efficacy in Crohn's disease (CD) and ulcerative colitis (UC) in several phase III trials. Mechanistically, etrolizumab is known to block β7 integrin ligand binding and reduces intestinal trafficking of β7-expressing cells.

View Article and Find Full Text PDF