Publications by authors named "Robert Hendricks"

Bioanalytical Pharmacokinetics (PK) methods are designed for robust performance under rigorous regulatory compliance requirements to ensure the generated data is reliable and maintains integrity. In a phase 1 dose-finding clinical study, aberrant PK profiles of two co-administered biologics drugs were observed. Unexpectedly, we discovered high fill levels in collection tubes from the majority of samples.

View Article and Find Full Text PDF

Immunogenicity evaluation is a critical part of drug development. Regulatory guidelines from multiple health agencies provide recommendations for the development and validation of anti-drug antibody (ADA) assays to assess immunogenicity in clinical trials. These recommendations primarily describe an ADA method run in one bioanalytical laboratory supporting a biotherapeutic molecule; however, there are increasing instances that may necessitate the support of the ADA method being run in more than one laboratory.

View Article and Find Full Text PDF

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone. However, there remains little consensus on the mechanism(s) of response with this combination.

View Article and Find Full Text PDF

Tiragolumab is a first-in-class, fully human IgG1/kappa anti-TIGIT monoclonal antibody that blocks the binding of TIGIT to CD155 (the poliovirus receptor). We summarize the pharmacokinetics (PK) data from the phase 1a/1b GO30103 study of Q3W (every 3 weeks) sequential dosing of tiragolumab (2, 8, 30, 100, 400, 600, or 1200 mg) followed by atezolizumab (1200 mg), Q4W (every 4 weeks) sequential dosing (tiragolumab 840 mg followed by atezolizumab 1680 mg), and Q4W co-infusion (tiragolumab 840 mg plus atezolizumab 1680 mg). Serum samples were collected at multiple time points following tiragolumab and atezolizumab intravenous infusion in patients with solid tumors for PK and immunogenicity assessment.

View Article and Find Full Text PDF

Ocrelizumab (OCREVUS®) is a humanized anti-CD20 monoclonal antibody approved for the treatment of adult patients with relapsing multiple sclerosis (RMS) and primary progressive multiple sclerosis (PPMS). Here, we discuss the strategic and technical considerations needed to develop a robust antibody-dependent cellular cytotoxicity (ADCC)-based neutralizing antibody (NAb) assay to detect anti-ocrelizumab NAb in patients enrolled in the ocrelizumab registered clinical trials. The NAb detection assay consisted of a two-tier assay that included a screening assay and a confirmation assay.

View Article and Find Full Text PDF

Background: Neurofilament light chain (NfL), a neuronal cytoskeletal protein that is released upon neuroaxonal injury, is associated with multiple sclerosis (MS) relapsing activity and has demonstrated some prognostic ability for future relapse-related disease progression, yet its value in assessing non-relapsing disease progression remains unclear.

Methods: We examined baseline and longitudinal blood NfL levels in 1421 persons with relapsing MS (RMS) and 596 persons with primary progressive MS (PPMS) from the pivotal ocrelizumab MS trials. NfL treatment-response and risk for disease worsening (including disability progression into the open-label extension period and slowly expanding lesions [SELs] on brain MRI) at baseline and following treatment with ocrelizumab were evaluated using time-to-event analysis and linear regression models.

View Article and Find Full Text PDF

Introduction: This phase 1 trial assessed the safety, pharmacokinetics, and preliminary antitumor activity of RO7297089, an anti-BCMA/CD16a bispecific antibody.

Methods: RO7297089 was administered weekly by intravenous infusion to patients with relapsed/refractory multiple myeloma. The starting dose was 60 mg in this dose-escalation study utilizing a modified continual reassessment method with overdose control model.

View Article and Find Full Text PDF

RO7297089, an anti-B-cell maturation antigen (BCMA)/CD16A bispecific tetravalent antibody, is being developed as a multiple myeloma (MM) therapeutic. This study characterized nonclinical pharmacokinetics (PK), pharmacodynamics (PD), soluble BCMA (sBCMA), and soluble CD16 (sCD16) changes following administration of RO7297089 to support clinical trials. Unbound and total RO7297089 concentrations were measured in cynomolgus monkeys.

View Article and Find Full Text PDF

Objective: To develop an age-adjustment model for neurofilament light chain (NfL), an emerging injury marker in patients with a range of neurologic conditions including multiple sclerosis (MS).

Methods: Serum and plasma samples were collected from a healthy donor (HD) cohort of 118 individuals aged 24 to 66 years, 90 patients with relapsing MS (RMS) and 22 patients with progressive MS (PMS). Serum and plasma samples were assessed for NfL using the SIMOA assay (Quanterix NfL Advantage Kit™).

View Article and Find Full Text PDF

Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1)-infected corneas can develop a blinding immunoinflammatory condition called herpes stromal keratitis (HSK), which involves the loss of corneal sensitivity due to retraction of sensory nerves and subsequent hyperinnervation with sympathetic nerves. Increased concentrations of the cytokine VEGF-A in the cornea are associated with HSK severity. Here, we examined the impact of VEGF-A on neurologic changes that underly HSK using a mouse model of HSV-1 corneal infection.

View Article and Find Full Text PDF

Reactivation of herpes simplex virus 1 (HSV-1) from neurons in sensory ganglia such as the trigeminal ganglia (TG) is influenced by virus-specific CD8 T cells that infiltrate the ganglia at the onset of latency and contract to a stable activated tissue-resident memory population. In C57BL/6 mice, half of HSV-specific CD8 T cells (gB-CD8s) recognize one dominant epitope (residues 498 to 505) on glycoprotein B (gB), while the remainder (non-gB-CD8s) recognize 19 subdominant epitopes from 12 viral proteins. To address how expression by HSV-1 influences the formation and ganglionic retention of CD8 T cell populations, we developed recombinant HSV-1 with the native immunodominant gB epitope disrupted but then expressed ectopically from different viral promoters.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) causes a lifelong infection of neurons that innervate barrier sites like the skin and mucosal surfaces like the eye. After primary infection of the cornea, the virus enters latency within the trigeminal ganglion (TG), from which it can reactivate throughout the life of the host. Viral latency is maintained, in part, by virus-specific CD8 T cells that nonlethally interact with infected neurons.

View Article and Find Full Text PDF
Article Synopsis
  • * A study validated the Simoa NF-light Advantage Kit for use with CSF, serum, and plasma, utilizing both recombinant human (rhuman) and bovine NfL standards.
  • * It was discovered that in multiple sclerosis patients, there's a strong correlation between NfL levels in blood and CSF, leading to a conversion factor of about 5:1 when comparing bovine to rhuman NfL calibrators.
View Article and Find Full Text PDF

Aim: Cytokine/chemokine levels can reflect the pharmacodynamics of checkpoint inhibitors. The single molecule array (Simoa) HD-1 is a sensitive next-generation immunoassay platform for quantification of low abundance proteins, with potential for cancer immunotherapy mechanism of action studies.

Results: The Simoa IL-12p70 reagents, standard curve and test conditions were optimized for improved precision and linearity of dilution in plasma of cancer patients.

View Article and Find Full Text PDF

Immune privilege helps protect the cornea from damaging inflammation but can also impair pathogen clearance from this mucosal surface. Programmed death-ligand 1 (PD-L1 or B7-H1) contributes to corneal immune privilege by inhibiting the function of a variety of immune cells. We asked whether programmed death-1 (PD-1)/PD-L1 interaction regulates HSV-1 clearance from infected corneas.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise.

View Article and Find Full Text PDF

The Pennsylvania region hosts numerous oil and gas reservoirs and the presence of hydrocarbons in groundwater has been locally observed. However, these methane-containing freshwater ecosystems remain poorly explored despite their potential importance in the carbon cycle. Methane isotope analysis and analysis of low molecular weight hydrocarbon gases from 18 water wells indicated that active methane cycling may be occurring in methane-containing groundwater from the Pennsylvania region.

View Article and Find Full Text PDF

HSV-1 infections of the cornea range in severity from minor transient discomfort to the blinding disease herpes stromal keratitis, yet most patients experience a single episode of epithelial keratitis followed by re-establishment of a clear cornea. We asked whether a single transient episode of HSV-1 epithelial keratitis causes long-term changes in the corneal microenvironment that influence immune responses to subsequent corneal infection or trauma. We showed that C57BL/6 mouse corneas infected with HSV-1 KOS, which induces transient herpes epithelial keratitis without herpes stromal keratitis sequelae, possessed a significant leukocytic infiltrate composed primarily of CD4 T cells and macrophages along with elevated chemokines and cytokines that persisted without loss of corneal clarity (subclinical inflammation).

View Article and Find Full Text PDF

Purpose: Most of the inflammation in murine herpes simplex virus type 1 (HSV-1)-induced stromal keratitis (HSK) is due to exposure stress resulting from loss of corneal nerves and blink reflex. Corneal grafts often fail when placed on corneal beds with a history of HSK. We asked if corneal exposure contributes to the severe pathology of corneal grafts on HSV-1-infected corneal beds.

View Article and Find Full Text PDF

We describe an extraordinary case of an immunocompetent patient who developed sacral-distribution zoster, followed 3months later by neurological disease that progressed for 6years and was attributed to varicella zoster virus (VZV) infection of the brain. Despite the prolonged infection, neurologic symptoms and signs resolved rapidly and completely after treatment with intravenous acyclovir.

View Article and Find Full Text PDF