Publications by authors named "Ruixin Fu"

Breast cancer is one of the most common malignant tumors among women, which seriously threatens women's health. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer, characterized by poor prognosis, is an aggressive phenotype accounting for 15-20% of all kinds of breast cancers. Therefore, it has attracted great interest among researchers in discovering targeted therapy drugs countering HER2, and they have been considered as the pivotal therapeutic regimen for HER2-positive breast cancer patients.

View Article and Find Full Text PDF

In this study, we proposed a hemodynamic evaluation method for scar laser therapy based on diffuse correlation spectroscopy (DCS) quantitatively. In vivo experiments were conducted to validate the feasibility of the proposed method by monitoring microvascular blood flow (BF) before and immediately after the laser therapy via a custom-built DCS device. Six participants were enrolled with two kinds of laser therapy treatments, one of which is aimed to induce vasoconstriction, while the other is intended to promote vasodilation.

View Article and Find Full Text PDF

The rhizosphere microbiome plays a critical role in promoting crop health and productivity. Selenium (Se), a beneficial trace element for plants, not only enhances resistance to both abiotic and biotic stresses but also modulates soil microbial communities. Se biofortification of crops grown in seleniferous soils using selenobacteria represents an eco-friendly and sustainable biotechnological approach.

View Article and Find Full Text PDF

Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA--DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA--DMAPS--DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained.

View Article and Find Full Text PDF

Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemotaxis motility.

View Article and Find Full Text PDF

The RIPENING-INHIBITOR (RIN) transcriptional factor is a key regulator governing fruit ripening. While RIN also affects other physiological processes, its potential roles in triggering interactions with the rhizosphere microbiome and plant health are unknown. Here we show that RIN affects microbiome-mediated disease resistance via root exudation, leading to recruitment of microbiota that suppress the soil-borne, phytopathogenic Ralstonia solanacearum bacterium.

View Article and Find Full Text PDF

Rhizomicrobiome plays important roles in plant growth and health, contributing to the sustainable development of agriculture. Plants recruit and assemble the rhizomicrobiome to satisfy their functional requirements, which is widely recognized as the 'cry for help' theory, but the intrinsic mechanisms are still limited. In this study, we revealed a novel mechanism by which plants reprogram the functional expression of inhabited rhizobacteria, in addition to the de novo recruitment of soil microbes, to satisfy different functional requirements as plants grow.

View Article and Find Full Text PDF

Heterologous expression of BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, or BnNF-YB6 from rapeseed promotes the floral process and also affects root development in Arabidopsis. The transcriptional regulator NUCLEAR FACTOR-Y (NF-Y) is a heterotrimeric complex composed of NF-YA, NF-YB, and NF-YC proteins and is ubiquitous in yeast, animal, and plant systems. In this study, we found that five NF-YB proteins from rapeseed (Brassica napus), including BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, and BnNF-YB6 (BnNF-YB2/3/4/5/6), all function in photoperiodic flowering and root elongation.

View Article and Find Full Text PDF

Bacteria have evolved multiple signal transduction systems that permit an adaptation to changing environmental conditions. Chemoreceptor-based signaling cascades are very abundant in bacteria and are among the most complex signaling systems. Currently, our knowledge on the molecular features that determine signal recognition at chemoreceptors is limited.

View Article and Find Full Text PDF

Plant hormones have been recently shown to exert an indirect influence on the recruitment of plant-associated microbiomes. However, it remains unclear the extent to which the disruption of the ethylene (ET) signaling pathway affects the assembly and functioning of plant-root microbiomes. In this study, the Never-ripe tomato mutant () was profiled for differences compared to the wild type (control).

View Article and Find Full Text PDF

Chemotaxis, the ability of motile bacteria to direct their movement in gradients of attractants and repellents, plays an important role during the rhizosphere colonization by rhizobacteria. The rhizosphere is a unique niche for plant-microbe interactions. Root exudates are highly complex mixtures of chemoeffectors composed of hundreds of different compounds.

View Article and Find Full Text PDF

Chemotaxis towards root exudates and subsequent biofilm formation are very important for root colonization and for providing the beneficial functions of plant growth-promoting rhizobacteria (PGPRs). In this study, in comparison with other root-secreted compounds, D-galactose in the root exudates of cucumber was found to be a strong chemoattractant at the concentration of 1 μM for Bacillus velezensis SQR9. Chemotaxis assays with methyl-accepting chemotaxis proteins (MCPs) deletion strains demonstrated that McpA was solely responsible for chemotaxis towards D-galactose.

View Article and Find Full Text PDF

Chemotaxis to plant root exudates is supposed to be a prerequisite for efficient root colonization by rhizobacteria. This is a highly multifactorial process since root exudates are complex compound mixtures of which components are recognized by different chemoreceptors. Little information is available as to the key components in root exudates and their receptors that drive colonization related chemotaxis.

View Article and Find Full Text PDF

Chemotaxis-mediated response to root exudates, initiated by sensing-specific ligands through methyl-accepting chemotaxis proteins (MCP), is very important for root colonization and beneficial functions of plant-growth-promoting rhizobacteria (PGPR). Systematic identification of chemoattractants in complex root exudates and their sensing chemoreceptors in PGPR is helpful for enhancing their recruitment and colonization. In this study, 39 chemoattractants and 5 chemorepellents, including amino acids, organic acids, and sugars, were identified from 98 tested components of root exudates for the well-studied PGPR strain Bacillus amyloliquefaciens SQR9.

View Article and Find Full Text PDF

Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses.

View Article and Find Full Text PDF