Nanomaterials (Basel)
August 2025
In this study, we report a strategy to suppress the formation of large Cu-rich particles by adding excessive interstitial carbon into CuFeMnNi high-entropy alloys. With the increase in C contents in the CuFeMnNi HEAs annealed at 1000 °C, the size and area fraction of the submicron Cu-rich particles markedly decreased. Of note, the CuFeMnNi 1.
View Article and Find Full Text PDFBackground: Chronic hip joint disease has a high prevalence in China, and the primary scale currently used to assess functional recovery after total hip arthroplasty (THA) is the Hip disability and Osteoarthritis Outcome Score - Physical Function Short-form (HOOS-PS). Therefore, our objective was to translate the HOOS-PS scale into Simplified Chinese and evaluate its reliability, validity, and responsiveness in THA patients.
Methods: First, we followed the widely accepted cross-cultural translation process to translate the original HOOS-PS into the Chinese version of HOOS-PS (CHOOS-PS).
Sensors (Basel)
July 2025
Sign language recognition plays a crucial role in enabling communication for deaf individuals, yet current methods face limitations such as sensitivity to lighting conditions, occlusions, and lack of adaptability in diverse environments. This study presents a wearable multi-channel tactile sensing system based on smart textiles, designed to capture subtle wrist and finger motions for static sign language recognition. The system leverages triboelectric yarns sewn into gloves and sleeves to construct a skin-conformal tactile sensor array, capable of detecting biomechanical interactions through contact and deformation.
View Article and Find Full Text PDFIntroduction: Community-acquired pneumonia (CAP) is a significant concern for children worldwide and is associated with a high morbidity and mortality. To improve patient outcomes, early intervention and accurate diagnosis are essential. Artificial intelligence (AI) can mine and label imaging data and thus may contribute to precision research and personalized clinical management.
View Article and Find Full Text PDFPulmonary metastatic melanoma (PMM) is an aggressive malignancy with limited response and rapid resistance to clinical chemotherapy, radiotherapy, immunotherapy, and biological therapies. Here, we developed a targeted biomimetic drug delivery system, TP-siRC@tHyNPs, by fusing exosomes derived from engineered cells overexpressing DR5 single-chain variable fragments (DR5-Exo) with liposomes coencapsulating triptolide (TP) and CYP3A4-siRNA (TP-siRC@Lip). DR5-Exo facilitated the targeted delivery of drug to tumor cells through DR5 receptor recognition and simultaneously activated apoptotic pathways.
View Article and Find Full Text PDFJ Mater Chem B
June 2025
Currently, nanomedicines have been widely applied in the treatment of various types of tumors. However, due to the complexity of the tumor microenvironment, conventional nanomedicines often exhibit poor efficacy, insufficient site specificity, and susceptibility to off-target effects. In contrast, dual-ligand nanomedicines demonstrate superior targeting ability and drug penetration in tumor therapy.
View Article and Find Full Text PDFLimitations in soil nutrient content, particularly phosphorus (P), are key factors constraining saline soil ecosystems. Soil phosphorus-cycling functional microorganisms contribute to the conversion of insoluble phosphorus and increase available phosphorus (AP) levels in phosphorus-deficient soils. However, there is limited knowledge on how soil phoD-harboring bacterial communities regulate AP availability across varying salinization types and degrees.
View Article and Find Full Text PDFIn this work, we present an ultrasensitive, specific, and high-signal-to-background ratio fluorescence split-aptasensor for D-vasopressin (D-VP) detection. This sensor is based on target-induced self-propelled 3D DNA walkers in conjunction with CRISPR-Cas12a technology. Two split probes (SDA 1 and SDA 2) were designed to undergo structural recombination and function as a walking chain (SDA) under the induction of D-VP.
View Article and Find Full Text PDFSmall Methods
July 2025
Exosomes, small extracellular vesicles with lipid bilayer membranes, play a crucial role in cellular communication and can transfer diverse biological cargo, including proteins, lipids, and nucleic acids, from donor to recipient cells. Exosomes possess diverse immunological properties, such as antigen delivery and immune activation, along with excellent drug delivery capabilities, making them promising candidates for vaccine development. For different diseases, exosome-based vaccines can be designed as therapeutic or prophylactic vaccines by leveraging cellular immunity or humoral immunity.
View Article and Find Full Text PDFLong-term monoculture of significantly affects its productivity and soil health. Soil microbiota, which mediate the sustainable development of soil ecosystems, are influenced by the age of wolfberry plants. However, the comprehensive effects of long-term cultivation of on the soil microbial community are not yet fully understood.
View Article and Find Full Text PDF() are a gene family that relies on NAD +/NADP + proteins to oxidize toxic aldehydes to non-toxic carboxylic acids, and they play a crucial role in the growth and development of plants, as well as in their ability to withstand stress. This study identified 26 genes from six gene families distributed on six chromosomes. By analyzing the phylogeny, gene structure, conserved motifs, cis-regulatory elements, collinearity of homologs, evolutionary patterns, differentiation patterns, and expression variations under drought stress, we found that the gene is involved in phytohormones and exhibits responsiveness to various environmental stressors by modulating multiple cis-regulatory elements.
View Article and Find Full Text PDFSalinization processes profoundly impact soil quality and health, altering physical structure, chemical composition, and biological activity, particularly concerning soil microbial populations. Microbial communities play a pivotal role in maintaining soil ecosystem multifunctionality (EMF). Understanding the response of microbial communities to salinity stress is crucial for sustainable soil management and enhancing ecosystem resilience in arid and semi-arid regions.
View Article and Find Full Text PDFPulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.
View Article and Find Full Text PDFLivestock manure use in agriculture contributes to pollutants like antibiotic resistance genes (ARGs) and resistant bacteria. This practice could potentially facilitate ARGs development in soil ecosystems. Our study aimed to explore ARGs and bacterial communities in cattle manure from Ningxia beef cattle farms with varying breeding periods.
View Article and Find Full Text PDFJ Nanobiotechnology
October 2024
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells.
View Article and Find Full Text PDFContinuous cropping is a common obstacle limiting the high quality and yield of (wolfberry). To clarify the response of soil characteristics of the wolfberry root zone to continuous cropping years, we systematically determined the physicochemical properties and pesticide residues of soils in the wolfberry root zone with different continuous cropping years. In addition, soil bacterial and fungal communities were characterized using high-throughput sequencing technology.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2024
Hydrogen has garnered considerable attention as a promising energy source for addressing contemporary environmental degradation and energy scarcity challenges. Electrocatalytic water splitting for hydrogen production has emerged as an environmentally friendly and versatile method, offering high purity. However, the development of cost-effective electrocatalytic catalysts using abundant and inexpensive materials is crucial.
View Article and Find Full Text PDFIrrigation practices and groundwater levels are critical factors contributing to soil salinization in arid and semi-arid regions. However, the impact of soil salinization resulting from Yellow River water irrigation and recharge on microbial communities and their functions in the Huinong District has not been thoroughly documented. In this study, high-throughput sequencing technology was employed to analyze the diversity, composition, and structure of bacterial and fungal communities across a gradient of salinized soils.
View Article and Find Full Text PDFSignal Transduct Target Ther
August 2024
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape.
View Article and Find Full Text PDFBackground: The global prospective surveillance data showed the re-emergence of mycoplasma pneumoniae pneumonia (MPP) in Europe and Asia after the coronavirus disease 2019 pandemic. We sought to observe the effect of macrolide antibiotics in the treatment of MPP carrying a macrolide-resistant mutation gene and the potential of targeted next-generation sequencing (tNGS) as a front-line diagnostic in MPP patients.
Methods: The baseline characteristics of 91 children with MPP hospitalized from January to October 2023 were retrospectively analyzed.
Materials (Basel)
June 2024
Hydrogen atoms can enter into metallic materials through penetration and diffusion, leading to the degradation of the mechanical properties of the materials, and the application of hydrogen barrier coatings is an effective means to alleviate this problem. Zirconia coatings (ZrO) have been widely studied as a common hydrogen barrier coating, but zirconia undergoes a crystalline transition with temperature change, which can lead to volumetric changes in the coating and thus cause problems such as cracking and peeling of the coating. In this work, ZrO coating was prepared on a Q235 matrix using a sol-gel method, while yttria-stabilized zirconia (YSZ) coatings with different contents of rare earth elements were prepared in order to alleviate a series of problems caused by the crystal form transformation of ZrO.
View Article and Find Full Text PDFBackground: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities.
View Article and Find Full Text PDFFumonisin (FB) is a pervasive hazardous substance in the environment, presenting significant threats to human health and ecological systems. Thus, the selective and sensitive detection of fumonisin B1 (FB1) is crucial due to its high toxicity and wide distribution in corn, oats, and related products. In this work, we developed a novel and versatile fluorescent aptasensor by combining enzyme-assisted dual recycling amplification with 2D δ-FeOOH-NH nanosheets for the determination of FB1.
View Article and Find Full Text PDFNanotechnology
November 2023
Developing non-noble-metal electrocatalysts for hydrogen evolution reactions with high activity and stability is the key issue in green hydrogen generation based on electrolytic water splitting. It has been recognized that the stacking of large CoP particles limits the intrinsic activity of as-synthesized CoP catalyst for hydrogen evolution reaction. In the present study, N-MoC/CoP-0.
View Article and Find Full Text PDFA simple and portable paper-based analytical device was developed for visual and semiquantitative detection of ferric ion in real samples using green emitting carbon dots (CDs), which were prepared microwave method using sodium citrate, urea and sodium hydroxide as raw materials and then loaded on the surface of paper substrate. When Fe exists, the green fluorescence of CDs was quenched and significant color change from green to dark blue were observed, resulting the visual detection of Fe with a minimum distinguishable concentration of 100 μM. By analyzing the intensity changes of green channels of test paper with the help of smartphone, the semiquantitative detection was realized within the range of 100 μM to 1200 μM.
View Article and Find Full Text PDF