Publications by authors named "John A Rogers"

The rich range of biomarkers in sweat and the ability to collect sweat in a non-invasive manner create interest in the use of this biofluid for assessments of health and physiological status, with potential applications that range from sports and fitness to clinical medicine. This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, throughout ranges that are physiologically relevant. The results allow for routine, non-pharmacological capture of sweat for patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.

View Article and Find Full Text PDF

Monitoring regional tissue oxygenation in animal models and potentially in human subjects can yield insights into the underlying mechanisms of local O-mediated physiological processes and provide diagnostic and therapeutic guidance for relevant disease states. Existing technologies for tissue oxygenation assessments involve some combination of disadvantages in requirements for physical tethers, anesthetics, and special apparatus, often with confounding effects on the natural behaviors of test subjects. This work introduces an entirely wireless and fully implantable platform incorporating (i) microscale optoelectronics for continuous sensing of local hemoglobin dynamics and (ii) advanced designs in continuous, wireless power delivery and data output for tether-free operation.

View Article and Find Full Text PDF

Existing vital sign monitoring systems in the neonatal intensive care unit (NICU) require multiple wires connected to rigid sensors with strongly adherent interfaces to the skin. We introduce a pair of ultrathin, soft, skin-like electronic devices whose coordinated, wireless operation reproduces the functionality of these traditional technologies but bypasses their intrinsic limitations. The enabling advances in engineering science include designs that support wireless, battery-free operation; real-time, in-sensor data analytics; time-synchronized, continuous data streaming; soft mechanics and gentle adhesive interfaces to the skin; and compatibility with visual inspection and with medical imaging techniques used in the NICU.

View Article and Find Full Text PDF

Sweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cytokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation.

View Article and Find Full Text PDF

Wearable sweat sensors rely either on electronics for electrochemical detection or on colorimetry for visual readout. Non-ideal form factors represent disadvantages of the former, while semiquantitative operation and narrow scope of measurable biomarkers characterize the latter. Here, we introduce a battery-free, wireless electronic sensing platform inspired by biofuel cells that integrates chronometric microfluidic platforms with embedded colorimetric assays.

View Article and Find Full Text PDF

Noninvasive, in situ biochemical monitoring of physiological status, via the use of sweat, could enable new forms of health care diagnostics and personalized hydration strategies. Recent advances in sweat collection and sensing technologies offer powerful capabilities, but they are not effective for use in extreme situations such as aquatic or arid environments, because of unique challenges in eliminating interference/contamination from surrounding water, maintaining robust adhesion in the presence of viscous drag forces and/or vigorous motion, and preventing evaporation of collected sweat. This paper introduces materials and designs for waterproof, epidermal, microfluidic and electronic systems that adhere to the skin to enable capture, storage, and analysis of sweat, even while fully underwater.

View Article and Find Full Text PDF

Real-time measurements of the total loss of sweat, the rate of sweating, the temperature of sweat, and the concentrations of electrolytes and metabolites in sweat can provide important insights into human physiology. Conventional methods use manual collection processes (e.g.

View Article and Find Full Text PDF

Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care.

View Article and Find Full Text PDF

Shaping ceramics into complex 3D geometries is desirable yet challenging, particularly those with structural hierarchy spanning different length scales. A mechano-plastic pyrolysis process that overcomes this limitation is reported. In addition to taking advantage of the moldability of organic polymers, the process uniquely incorporates mechano-plasticity via dynamic covalent bond exchange for reconfiguring the shape of a preceramic polymer.

View Article and Find Full Text PDF
Article Synopsis
  • Actively multiplexed flexible electronic devices are advanced technologies for mapping brain and organ activity across time and space, requiring long-lasting materials to ensure effective operation.
  • Recent advancements used metal silicide (TiSi) instead of silicon to significantly extend the lifespan of these devices from 1-2 years to over 20 years by enhancing biofluid stability.
  • The research supports the development of flexible, biocompatible electronic implants that can provide chronic stability and impressive performance for various biomedical applications.
View Article and Find Full Text PDF

The fast-growing field of bioelectronic medicine aims to develop engineered systems that can relieve clinical conditions by stimulating the peripheral nervous system. This type of technology relies largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis (also known as bladder pain syndrome).

View Article and Find Full Text PDF

Recent advances in materials chemistry and composite materials design establish the foundations for classes of electronics with physical form factors that bridge the gap between soft biological organisms and rigid microsystems technologies. Skin-interfaced platforms of this type have broad utility in continuous clinical-grade monitoring of physiological status, with the potential to significantly lower the cost and increase the efficacy of modern health care. Development of materials and device designs for power supply systems in this context is critically important, and it represents a rapidly expanding focus of research in the chemical sciences.

View Article and Find Full Text PDF

Exposure to electromagnetic radiation can have a profound impact on human health. Ultraviolet (UV) radiation from the sun causes skin cancer. Blue light affects the body's circadian melatonin rhythm.

View Article and Find Full Text PDF

To address demands for increased data transmission rates, electrically small antennas (ESAs) that simultaneously offer large frequency bandwidths and small physical sizes are of growing interest. 3D layouts are particularly important in this context and among various 3D ESAs, systems that adopt hemispherical shapes are very promising, because they can occupy the entire Chu-sphere and offer outstanding electrical performance. Researchers have developed a few different approaches to fabricate high-quality hemispherical ESAs, but most have static layouts and fixed operating frequencies.

View Article and Find Full Text PDF

Vibrational resonances of microelectromechanical systems (MEMS) can serve as means for assessing physical properties of ultrathin coatings in sensors and analytical platforms. Most such technologies exist in largely two-dimensional configurations with a limited total number of accessible vibration modes and modal displacements, thereby placing constraints on design options and operational capabilities. This study presents a set of concepts in three-dimensional (3D) microscale platforms with vibrational resonances excited by Lorentz-force actuation for purposes of measuring properties of thin-film coatings.

View Article and Find Full Text PDF

With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low-thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms.

View Article and Find Full Text PDF

Hydrocephalus is a common and costly neurological condition caused by the overproduction and/or impaired resorption of cerebrospinal fluid (CSF). The current standard of care, ventricular catheters (shunts), is prone to failure, which can result in nonspecific symptoms such as headaches, dizziness, and nausea. Current diagnostic tools for shunt failure such as computed tomography (CT), magnetic resonance imaging (MRI), radionuclide shunt patency studies (RSPSs), and ice pack-mediated thermodilution have disadvantages including high cost, poor accuracy, inconvenience, and safety concerns.

View Article and Find Full Text PDF
Article Synopsis
  • New methods for creating controlled 3D micro/nanostructures from 2D materials use the stress release in prestrained elastomeric substrates, but a major challenge is that these structures revert to 2D when removed from their substrate.
  • The introduction of shape memory polymers allows for the development of stable, freestanding 3D structures with precise dimensions (as small as ≈500 µm wide, 10 µm features, and 5 µm thick), with scalability options for different sizes.
  • This technology enables the integration of various materials into 3D frameworks, showcasing potential applications in diverse fields such as micro-electromechanical systems, smart stents, and tissue engineering through advanced 4D structural
View Article and Find Full Text PDF

Precise, quantitative measurements of the thermal properties of human skin can yield insights into thermoregulatory function, hydration, blood perfusion, wound healing, and other parameters of clinical interest. The need for wired power supply systems and data communication hardware limits, however, practical applicability of existing devices designed for measurements of this type. Here, a set of advanced materials, mechanics designs, integration schemes, and wireless circuits is reported as the basis for wireless, battery-free sensors that softly interface to the skin to enable precise measurements of its temperature and thermal transport properties.

View Article and Find Full Text PDF

Recently developed methods for mechanically-guided assembly exploit stress release in prestretched elastomeric substrates to guide the controlled formation of complex three-dimensional (3D) mesostructures in advanced functional materials and integrated electronic devices. The techniques of interfacial photopolymerization allow for realization of such 3D mesostructures in free-standing forms, separated from their elastomeric substrate, via formation of an integrated base layer. Theoretical models for the complex modes of deformation associated with this scheme are essential in the optimal design of the process parameters.

View Article and Find Full Text PDF

Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis.

View Article and Find Full Text PDF

Sweat excretion is a dynamic physiological process that varies with body position, activity level, environmental factors, and health status. Conventional means for measuring the properties of sweat yield accurate results but their requirements for sampling and analytics do not allow for use in the field. Emerging wearable devices offer significant advantages over existing approaches, but each has significant drawbacks associated with bulk and weight, inability to quantify volumetric sweat rate and loss, robustness, and/or inadequate accuracy in biochemical analysis.

View Article and Find Full Text PDF

Peripheral nerve injuries represent a significant problem in public health, constituting 2-5% of all trauma cases. For severe nerve injuries, even advanced forms of clinical intervention often lead to incomplete and unsatisfactory motor and/or sensory function. Numerous studies report the potential of pharmacological approaches (for example, growth factors, immunosuppressants) to accelerate and enhance nerve regeneration in rodent models.

View Article and Find Full Text PDF

Concentrator photovoltaic (CPV) systems, where incident direct solar radiation is tightly concentrated onto high-efficiency multi-junction solar cells by geometric optical elements, exhibit the highest efficiencies in converting the sun's energy into electric power. Their energy conversion efficiencies are greatly limited, however, due to Fresnel reflection losses occurring at three air/optics interfaces in the most sophisticated dual-stage CPV platforms. This paper describes a facile one-step wet-etching process to create a nanoporous surface with a graded-index profile on both flat and curved glasses, with capabilities of achieving ~99% average transmission efficiency in a wide wavelength range from 380 nm to 1.

View Article and Find Full Text PDF