The geometric shape and programming of mesogen alignment are two critical prerequisites for the effective actuation of liquid crystal elastomer (LCE) actuators. However, existing alignment programming approaches inevitably impose limitations on the geometric design of LCEs. In this study, we introduce a controlled radical diffusion mechanism that enables geometrically insensitive programming of actuation.
View Article and Find Full Text PDFDigital light processing 3D printing is a powerful manufacturing technology for shaping materials into complex geometries with high resolution. However, the rheological and chemical requirements for printing limit the use of materials to photoactive resins. Here, we propose a versatile manufacturing platform for constructing versatile materials using DLP-printed water-soluble granular polyacrylamide as sacrificial molds.
View Article and Find Full Text PDFJ Biophotonics
August 2025
This study validated the feasibility of visible spectroscopy in rapidly detecting Urinary Microalbumin (UALB). Based on 127 clinical urine samples, spectra ranging from 400 to 750 nm were collected using a microspectrometer. The successive projections algorithm (SPA) was used to screen for nine wavelengths highly correlated with UALB, and the spectral index (SI) method was fused to construct an m-SPA-SI strategy.
View Article and Find Full Text PDFEffective detection of wine adulteration can protect the rights and interests of consumers and producers. The combination of spectroscopic technology and chemometric methods can achieve adulteration discrimination of wine, providing feasibility for developing consumer-grade wine adulteration detection equipment. This study attempts to use a wavelength selection algorithm to guide the development of a four-channel, low-cost spectroscopic device for rapid identification of wine adulteration.
View Article and Find Full Text PDFMicrolenses are the basis of diverse modern instruments, which demand for more flexible fabrication. Thermal reflowing after photolithography of non-cross-linked polymers is the most widely applied strategy for manufacturing final products or primary molds of microlenses with desired microcurvatures. However, this approach can commonly form only one specific curvature for the same precursor system, lacking manufacturing flexibility.
View Article and Find Full Text PDFAlthough 3D-printing has offered a promising solution for the freeform fabrication of complex, arbitrary structures, developing elastomeric materials that simultaneously possess mechanical robustness and self-healing functionality remains a significant challenge. To address this, a 3D-printable elastomer is reported by the strategic incorporation of hierarchical hydrogen bonding (acylsemicarbazide and carbamate) into the photoactive resin, thereby overcoming the traditional trade-off between mechanical strength and dynamic functionality. The resulting elastomer exhibits ultra-toughness (158.
View Article and Find Full Text PDFPlants emit volatile compounds to defend against pathogens, and applying this mechanism in perishable food supply chains enhances preservation, safety, and sustainability. Here, we synthesized a sustained-release preservative, glutathione hexenal (Glut-SH-al), using the reversible Michael addition reaction between glutathione (GSH) and the natural compound E-2-hexenal. The reaction achieved 75.
View Article and Find Full Text PDFOne approach for closed-loop plastics recycling relies on reverting polymers back into monomers because one can then make new plastics without loss of properties. This depolymerization requirement restricts the molecular design to making polymers with high mechanical performance. We report a three-dimensional (3D) printing chemistry through stepwise photopolymerization by forming dithioacetal bonds.
View Article and Find Full Text PDFLeveraging the rich stimuli-response of polymers represents a promising direction towards optical communication/encryption. Sign language, which relies on specific geometric change for secured communication, has been widely used for the same purpose since ancient time. We report a strategy that combines both in a validated manner with a hydrogel that not only carries encrypted optical information but also has the hidden behavior to morph geometrically.
View Article and Find Full Text PDFMiniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting low-concentration analytes or subtle spectral variations critical for chemical and molecular analysis. This study introduces an innovative approach employing guided-mode resonance filters (GMRFs) to address these limitations.
View Article and Find Full Text PDFConventional spectrometer designs necessitate a compromise between their resolution and sensitivity, especially as device and detector dimensions are scaled down. Here, we report on a miniaturizable spectrometer platform where light throughput onto the detector is instead enhanced as the resolution is increased. This planar, CMOS-compatible platform is based around metasurface encoders designed to exhibit photonic bound states in the continuum, where operational range can be altered or extended simply through adjusting geometric parameters.
View Article and Find Full Text PDFOpt Lett
October 2024
Miniaturized spectrometers have emerged as pivotal tools in numerous scientific and industrial applications, offering advantages such as portability, cost-effectiveness, and the capability for onsite analysis. Despite these significant benefits, miniaturized spectrometers face critical challenges, particularly in sensitivity. Reduced dimensions often lead to compromises in optical path length and component quality, which can diminish detection limits and limit their applications in areas such as low-light-level measurements.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Dynamic covalent bonds endow liquid crystal elastomers (LCEs) with network rearrangeability, facilitating the fixation of mesogen alignment induced by external forces and enabling reversible actuation. In comparison, the bond exchange of supramolecular interactions is typically too significant to stably maintain the programmed alignment, particularly under intensified external stimuli. Nevertheless, remaking and recycling of supramolecular interaction-based polymer networks are more accessible than those based on dynamic covalent bonds, as the latter are difficult to completely dissociate.
View Article and Find Full Text PDFThree-dimensional (3D) printing has emerged as an attractive manufacturing technique because of its exceptional freedom in accessing geometrically complex customizable products. Its potential for mass manufacturing, however, is hampered by its low manufacturing efficiency (print speed) and insufficient product quality (mechanical properties). Recent progresses in ultra-fast 3D printing of photo-polymers have alleviated the issue of manufacturing efficiency, but the mechanical performance of typical printed polymers still falls far behind what is achievable with conventional processing techniques.
View Article and Find Full Text PDFColoration is essential for enhancing visual aesthetics and facilitating information communication, but it is difficult to apply to highly complex surfaces. Efficient manufacturing of 3D printed colored products is particularly challenging, given the arbitrary nature of the surfaces. We accomplish this goal with 3D/4D color printing using a photoprintable resin containing a free radical initiator, photocurable monomers, a photoacid generator, and an acid-sensitive dye.
View Article and Find Full Text PDFBackground: Anlotinib is a multi-target tyrosine kinase inhibitor (TKI) targeting the vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR), and c-Kit. This phase II study aimed to assess the efficacy and safety of anlotinib, either alone or in combination with bevacizumab (Bev) for recurrent high-grade glioma (rHGG) (NCT04822805, 30/03/2021).
Methods: Eligible patients had a histological diagnosis of rHGG with first or subsequent recurrences.
3D printing can produce intuitive, precise, and personalized anatomical models, providing invaluable support for precision medicine, particularly in areas like surgical training and preoperative planning. However, conventional 3D printed models are often significantly more rigid than human organs and cannot undergo repetitive resection, which severely restricts their clinical value. Here we report the stereolithographic 3D printing of personalized liver models based on physically crosslinked self-healing elastomers with liver-like softness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
The combination of three-dimensional (3D) printing and shape memory polymers (SMP) enables programmable shape morphing of complex 3D structures, which is commonly termed four-dimensional (4D) printing. The process requirements of vat photopolymerization-based 3D printing impose limitations on the molecular structure design of SMPs, making it challenging to achieve triple- or multiple-shaped memory effects. Herein, we printed SMPs with different values and obtained an SMP assembly through interfacial welding.
View Article and Find Full Text PDFTo achieve high-accuracy urine specific gravity discrimination and guide the design of four-waveband multispectral sensors. A modified combination strategy was attempted to be proposed based on the successive projections algorithm (SPA) and the spectral index (SI) in the present study. First, the SPA was used to select four spectral variables in the full spectra.
View Article and Find Full Text PDFDelicate geometries and suitable mechanical properties are essential for device applications of polymer materials. 3D printing offers unprecedented versatility, but the geometries and mechanical properties are typically fixed after printing. Here, we report a 3D photo-printable dynamic covalent network that can undergo two independently controllable bond exchange reactions, allowing reprogramming the geometry and mechanical properties after printing.
View Article and Find Full Text PDFAnal Methods
December 2022
The design of highly active nanozymes and the establishment of ultra-sensitive bioassays remain a challenge. Therefore, it is necessary to synthesize highly active nanozymes. In this work, a Pd-Pt-Ru (PPR) nanozyme was prepared by atomic coating of the bimetallic nanozyme Pd-Pt.
View Article and Find Full Text PDFPorous hydrogels have been intensively used in energy conversion and storage, catalysis, separation, and biomedical applications. Controlling the porosity of these materials over multiple length scales brings about new functionalities and higher efficiency but is a challenge using the current manufacturing methods. Herein we developed a post-programming method to lock the lyophilized pores of 3D printed hydrogels as an experimental platform towards hierarchically structured pores.
View Article and Find Full Text PDFNat Commun
October 2021
The low productivity of typical 3D printing is a major hurdle for its utilization in large-scale manufacturing. Innovative techniques have been developed to break the limitation of printing speed, however, sophisticated facilities or costly consumables are required, which still substantially restricts the economic efficiency. Here we report that a common stereolithographic 3D printing facility can achieve a very high printing speed (400 mm/h) using a green and inexpensive hydrogel as a separation interface against the cured part.
View Article and Find Full Text PDF