Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently developed methods for mechanically-guided assembly exploit stress release in prestretched elastomeric substrates to guide the controlled formation of complex three-dimensional (3D) mesostructures in advanced functional materials and integrated electronic devices. The techniques of interfacial photopolymerization allow for realization of such 3D mesostructures in free-standing forms, separated from their elastomeric substrate, via formation of an integrated base layer. Theoretical models for the complex modes of deformation associated with this scheme are essential in the optimal design of the process parameters. Here, we present an analytic finite-deformation model of an isolated double-ribbon structure to describe the buckling process and morphology change of the assembled mesostructures upon removal of the substrate. As validated by finite element analyses (FEA), this analytic model can accurately predict the profiles of the double-ribbon structure with a range of different design parameters. We further illustrate the extension of this model to the analyses of 3D mesostructures with different geometries. Inspired by analytic results for flexible base structures, combined experimental results and numerical simulations demonstrate that mechanical interactions between the two different layers can be leveraged to achieve hierarchical assembly of 3D mesostructures. These findings could be useful in further advances in designs of free-standing 3D mesostructures based on mechanically-guided assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm01753kDOI Listing

Publication Analysis

Top Keywords

analytic model
8
free-standing mesostructures
8
mechanically-guided assembly
8
double-ribbon structure
8
mesostructures
7
analytic
4
model two-level
4
two-level compressive
4
compressive buckling
4
buckling applications
4

Similar Publications

Soliton propagation of laser radiation in various nonlinear media is of great importance because of its numerous applications. Active periodic structures with parity-time symmetry provide the possibility for the solitons generation due to the balance of energy gain and loss. In the present paper, we derive an approximate analytical soliton solution to a model of two-color laser radiation propagation in an active periodic structure.

View Article and Find Full Text PDF

The Kuramoto model, a paradigmatic framework for studying synchronization, exhibits a transition to collective oscillations only above a critical coupling strength in the thermodynamic limit. However, real-world systems are finite, and their dynamics can deviate significantly from mean-field predictions. Here, we investigate finite-size effects in the Kuramoto model below the critical coupling, where the theory in the thermodynamic limit predicts complete asynchrony.

View Article and Find Full Text PDF

Global challenges posed by freshwater scarcity and the water-energy nexus drive demand for novel macromolecular design of tailored nanostructures endowed with a variety of hydrophilic and hydrophobic features. Offering potential to meet this demand, metal-organic framework (MOF) materials are synthesized from coordinated formations that create versatile reticular structures with variable water adsorption affinities. However, advances in the fundamental understanding of water interactions within these structures are impeded by the failure of classical analyses to identify mechanisms of interaction, connect fundamental isotherm types, and provide appropriate benchmarks for assessment.

View Article and Find Full Text PDF

Background: Retinol-binding protein 4 (RBP4) is a vitamin A transport protein synthesized in the liver and also plays a crucial role in inflammation and immune regulation. Low serum vitamin A levels have been observed in both pediatric and adult patients with ulcerative colitis (UC). The association between serum vitamin A levels and serum RBP4 levels, as well as the underlying mechanism involved inimpaired vitamin A transport during inflammation in UC patients, has yet to been investigated.

View Article and Find Full Text PDF