Publications by authors named "Fu Zhao"

Covalent organic framework (COF) holds great potential as next-generation high-performance desalination membrane material owing to their uniform nanochannels (homo-nanochannels) and abundant functional groups, and the hierarchical structures of nanochannels should be rationally designed to break the trade-off between water permeability and ion rejection. Here, a kind of COF membrane with hourglass-shaped nanochannels is fabricated by installing amino-cyclodextrin nanoparticles (CDN) onto the mouth of COF membrane via sequential assembly. The resulting hetero-nanochannels consist of a hydrophilic conical entrance (~1.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by genetic predisposition and alterations in brain structural connectivity. While existing studies have established associations between genetic variants and neuroanatomical features, the specific relationships in ADHD remained poorly understood. To address this gap, we developed adversarial deep canonical correlation analysis models (A-DCCA) to disentangle ADHD-specific and non-specific "gene-white matter" association patterns.

View Article and Find Full Text PDF

Alpine treeline is a prominent biogeographic feature worldwide, determined by the physiological limit of tree life form. There are considerable variations in the various dimensions of physiological limit among tree taxa; thus, varied environmental drivers and spatial patterns are expected for different tree taxa at treelines. However, such taxonomic variability of treeline is often overlooked in large-scale studies.

View Article and Find Full Text PDF

Previous evidence links gut microbiota to attention-deficit/hyperactivity disorder (ADHD) through the gut-brain axis. However, the specific microbiota contributing to symptoms remain unclear. To characterize the gut microbial profile related to different symptoms and explore the mediation mechanism between microbiota alterations and the core ADHD symptoms, we conducted shotgun metagenomic sequencing and fecal metabolomics analysis on 94 ADHD patients and 94 age- and gender-matched controls.

View Article and Find Full Text PDF

The BRAF mutation is one of the most common genetic alterations in thyroid tumors, and intrinsic feedback mechanisms have limited the clinical application of BRAF-specific inhibitors. This study aims to investigate the potential biological function of the downstream overexpressed molecule NGEF following the BRAF mutation and its regulatory mechanisms. By integrating data from the CEO database, TCGA database, and clinical samples, we found that NGEF is highly expressed in thyroid cancer and is positively correlated with tumor size, local lymph node metastasis, clinical stage, and disease-free survival.

View Article and Find Full Text PDF

4H-SiC-based ultraviolet (UV) photodetectors (PDs) are urgently required for applications in flame detection and secure communication. However, these devices are hindered by their low quantum efficiency properties and sluggish response speed. Here, a substantial enhancement in UV detection is implemented by integrating periodic triangular Al/AlO Core-Shell Nanoparticles (NPs) Arrays into 4H-SiC metal-semiconductor-metal (MSM) PDs.

View Article and Find Full Text PDF

Background: Ovarian cancer is a highly lethal gynecological malignancy characterized by significant heterogeneity and immunosuppressive tumor microenvironments, contributing to poor prognosis and therapeutic resistance. This study investigates the immunological and prognostic significance of FN1-expressing tumor cells using integrated multi-omics approaches.

Methods: The study used GEO database data processed with Seurat and Harmony R.

View Article and Find Full Text PDF

Background: A key aspect of tumor biology is the involvement of cancer-associated fibroblasts (CAFs) in shaping the immunosuppressive microenvironment. However, the dynamic and complex key roles of CAFs in the melanoma immune microenvironment have not been elucidated.

Methods: The CAFs landscape in melanoma was characterized using single-cell RNA-seq and spatial transcriptomics.

View Article and Find Full Text PDF

Unlabelled: Kiwifruit bacterial canker, caused by pv. (Psa), is an emerging global concern in kiwifruit production. Successful Psa infection in kiwifruit relies on the type III secretion system (T3SS), which is governed by the HrpR/S-HrpL regulatory pathway.

View Article and Find Full Text PDF

NF2-related schwannomatosis (NF2-SWN) is a genetic predisposition syndrome characterized by the development of bilateral vestibular schwannomas (VSs). Despite their benign nature and consistent histopathological characteristics, these tumours display significant clinical and therapeutic heterogeneity. To elucidate the molecular heterogeneity within NF2-SWN schwannomas, we performed comprehensive molecular analyses on a cohort of 70 patients with NF2-SWN, including bulk RNA sequencing, whole genome or exome sequencing, single nuclear RNA (snRNA) sequencing and immunohistochemistry.

View Article and Find Full Text PDF

Although reduced levels of global 5-hydroxymethylcytosine (5hmC) have been observed in medulloblastomas (MBs), it remains unclear whether immunohistochemical (IHC) evaluation of 5hmC can serve as a prognostic biomarker for patients with MB. We performed IHC staining using a 5hmC antibody on a cohort of 114 pediatric MBs, including 69 non-WNT/non-SHH MBs. The 5hmC staining score was evaluated using a 9-point scale based on both the staining intensity and the percentage positive cells.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell and plasma cell malignancies, and numerous promising targets against solid tumours are being explored. Despite their initial therapeutic success in hematological cancers, relapse occurs in a significant fraction of patients, highlighting the need for further innovations in advancing CAR T cell therapy. Tumour antigen heterogeneity and acquired tumour resistance leading to antigen escape (antigen loss/downregulation) have emerged as a crucial factor contributing to immune escape and CAR T cell resistance, particularly in the case of solid tumours with only limited success achieved to date.

View Article and Find Full Text PDF

Background: Cynomorium songaricum Rupr. (CSR), a perennial herb with a rich history in traditional medicine, has demonstrated therapeutic potential against metabolic syndrome (MetS) through its active compounds, including proanthocyanidins, polysaccharides, and triterpenoids. MetS, a global health concern, encompasses interlinked conditions such as obesity, type 2 diabetes mellitus (T2DM), and inflammation.

View Article and Find Full Text PDF

Although the efficacy of pharmacy in the treatment of attention deficit/hyperactivity disorder (ADHD) has been well established, the lack of predictors of treatment response poses great challenges for personalized treatment. The current study employed a comprehensive approach, combining genome-wide association analyses (GWAS) and deep learning (DL) methods, to elucidate the genetic underpinnings of pharmacological treatment response in ADHD. Based on genotype data of medication-naïve patients with ADHD who received pharmacological treatments for 12 weeks, the current study performed GWAS using the percentage changes in ADHD-RS score as phenotype.

View Article and Find Full Text PDF

Background: High-grade serous ovarian cancer (HGSOC), the predominant subtype of epithelial ovarian cancer, is frequently diagnosed at an advanced stage due to its nonspecific early symptoms. Despite standard treatments, including cytoreductive surgery and platinum-based chemotherapy, significant improvements in survival have been limited. Understanding the molecular mechanisms, immune landscape, and drug sensitivity of HGSOC is crucial for developing more effective and personalized therapies.

View Article and Find Full Text PDF

Melanoma is an aggressive type of skin cancer that arises from melanocytes, the cells responsible for producing skin pigment. In contrast to non-melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, melanoma is more invasive. Melanoma was distinguished by its rapid progression, high metastatic potential, and significant resistance to conventional therapies.

View Article and Find Full Text PDF

Background: Breast cancer had been the most frequently diagnosed cancer among women, making up nearly one-third of all female cancers. Hormone receptor-positive breast cancer (HR+BC) was the most prevalent subtype of breast cancer and exhibited significant heterogeneity. Despite advancements in endocrine therapies, patients with advanced HR+BC often faced poor outcomes due to the development of resistance to treatment.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is a multifactorial and heterogeneous disease, ranking among the most prevalent malignancies in men. In 2020, there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all malignant tumors.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) refers to a cancerous tumor that develops in the upper and side walls of the nasopharyngeal cavity. Typically, individuals are often diagnosed with the disease when it has already progressed significantly, and those with advanced NPC tend to have an unfavorable outlook in terms of response rate to targeted treatments and overall clinical survival. Various molecular mechanisms, including Myeloid-derived suppressor cells and factors like PD-L1, have been explored to enhance the outcome of NPC.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is the most common digestive cancer in the world. Microsatellite stability (MSS) and microsatellite instability (MSI-high) are important molecular subtypes of CRC closely related to tumor occurrence and progression and immunotherapy efficacy. The presence of CD8 CXCR5 follicular cytotoxic T (T) cells is strongly associated with autoimmune disease and CD8 effector function.

View Article and Find Full Text PDF

Objective: The aim of this research was to gain a thorough understanding of the processes involved in cell communication and discover potential indicators for treating multiple myeloma (MM) through the use of single-cell RNA sequencing (scRNA-seq). And explored the expression of multiple myeloma-related subgroups on metal ion-related pathways to explore the relationship between MM and metal ions.

Methods: We performed a fair examination using single-cell RNA sequencing on 32 bone marrow specimens collected from 22 individuals at different points of MM advancement and 9 individuals without any health issues.

View Article and Find Full Text PDF
Article Synopsis
  • Neuroblastoma (NB) is the most common solid tumor in children, particularly high-risk forms which are hard to treat and have low survival rates; this study aimed to explore new treatment targets using single-cell RNA sequencing (scRNA-seq) and analyze cuproptosis, a novel cell death pathway.
  • The research employed various bioinformatic tools, including Seurat, GO enrichment analysis, and CellChat, to investigate chromosomal variations, intercellular communication, and transcription factor profiles in NB cells.
  • Findings indicated that neuroendocrine (NE) cells, especially a specific subset called C1 PCLAF+ NE cells, are crucial in NB development, providing insights that could drive new therapeutic approaches targeting these
View Article and Find Full Text PDF

Background: Cervical cancer (CC) is the fourth most common malignancy among women globally and serves as the main cause of cancer-related deaths among women in developing countries. The early symptoms of CC are often not apparent, with diagnoses typically made at advanced stages, which lead to poor clinical prognoses. In recent years, numerous studies have shown that there is a close relationship between mast cells (MCs) and tumor development.

View Article and Find Full Text PDF

One-dimensional nanomaterials have become one of the most available nanoreinforcing agents for developing next-generation high-performance functional self-healing composites owing to their unique structural characteristics and surface electron structure. However, nanoscale control, structural regulation, and crystal growth are still enormous challenges in the synthesis of specific one-dimensional nanomaterials. Here, oxygen-defective MoO nanowires with abundant surface dynamic bonding were successfully synthesized as novel nanofillers and photothermal response agents combined with a polyurethane matrix to construct composite elastomers, thus achieving mechanically enhanced and self-healing properties.

View Article and Find Full Text PDF