Publications by authors named "Ebe Merilo"

Crop yield is at increasing risk due to water scarcity and climate change. Agrochemicals can activate hormone receptors to regulate transpiration and modulate transcription and address water deficits. Structure-guided optimization of multiple abscisic acid (ABA) receptor-agonist interactions is necessary to activate the entire PYRABACTIN RESISTANCE 1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) receptor family.

View Article and Find Full Text PDF

The balance between the CO entry for photosynthesis and transpiration water loss is crucial for plant growth, and ABA signaling can affect this equilibrium. To test how ABA balances plant growth and environmental adaptation, we performed molecular genetics studies in the biotech crop Nicotiana benthamiana under well-watered or drought conditions. Studies on ABA signaling in crops are complicated by the multigenic nature of the PYR/PYL/RCAR ABA receptor family and its functional redundancy, which is particularly challenging in polyploid plants.

View Article and Find Full Text PDF

Stomatal pores that control plant CO2 uptake and water loss affect global carbon and water cycles. In the era of increasing atmospheric CO2 levels and vapor pressure deficit (VPD), it is essential to understand how these stimuli affect stomatal behavior. Whether stomatal responses to sub-ambient and above-ambient CO2 levels are governed by the same regulators and depend on VPD remains unknown.

View Article and Find Full Text PDF

Abscisic acid (ABA) is best known for regulating the responses to abiotic stressors. Thus, applications of ABA signaling pathways are considered promising targets for securing yield under stress. ABA levels rise in response to abiotic stress, mounting physiological and metabolic responses that promote plant survival under unfavorable conditions.

View Article and Find Full Text PDF

Climate change-associated rise in VPD (atmospheric vapor pressure deficit) results in increased plant transpiration and reduced stomatal conductance, photosynthesis, biomass, and yield. High VPD-induced stomatal closure of Arabidopsis is an active process regulated via the kinase SnRK2.6 (OPEN STOMATA 1, OST1).

View Article and Find Full Text PDF

Strategies to activate abscisic acid (ABA) receptors and boost ABA signaling by small molecules that act as ABA receptor agonists are promising biotechnological tools to enhance plant drought tolerance. Protein structures of crop ABA receptors might require modifications to improve recognition of chemical ligands, which in turn can be optimized by structural information. Through structure-based targeted design, we have combined chemical and genetic approaches to generate an ABA receptor agonist molecule (iSB09) and engineer a CsPYL1 ABA receptor, named CsPYL1, which efficiently binds iSB09.

View Article and Find Full Text PDF

Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches.

View Article and Find Full Text PDF

Vapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants.

View Article and Find Full Text PDF

Initiation of stomatal closure by various stimuli requires activation of guard cell plasma membrane anion channels, which are defined as rapid (R)- and slow (S)-type. The single-gene loss-of-function mutants of these proteins are well characterized. However, the impact of suppressing both the S- and R-type channels has not been studied.

View Article and Find Full Text PDF

Sucrose-non-fermenting-1-related protein kinase-2s (SnRK2s) are critical for plant abiotic stress responses, including abscisic acid (ABA) signaling. Here, we develop a genetically encoded reporter for SnRK2 kinase activity. This sensor, named SNACS, shows an increase in the ratio of yellow to cyan fluorescence emission by OST1/SnRK2.

View Article and Find Full Text PDF

Land plants are considered monophyletic, descending from a single successful colonization of land by an aquatic algal ancestor. The ability to survive dehydration to the point of desiccation is a key adaptive trait enabling terrestrialization. In extant land plants, desiccation tolerance depends on the action of the hormone abscisic acid (ABA) that acts through a receptor-signal transduction pathway comprising a PYRABACTIN RESISTANCE 1-like (PYL)-PROTEIN PHOSPHATASE 2C (PP2C)-SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module.

View Article and Find Full Text PDF

Stomata are microscopic pores found on the surfaces of leaves that act to control CO uptake and water loss. By integrating information derived from endogenous signals with cues from the surrounding environment, the guard cells, which surround the pore, 'set' the stomatal aperture to suit the prevailing conditions. Much research has concentrated on understanding the rapid intracellular changes that result in immediate changes to the stomatal aperture.

View Article and Find Full Text PDF

Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs.

View Article and Find Full Text PDF

Stomata, small pores on the surfaces of leaves formed by a pair of guard cells, adapt rapidly to changes in the environment by adjusting the aperture width. As a long-term response, the number of stomata is regulated during stomatal development. The hormone abscisic acid (ABA) regulates both processes.

View Article and Find Full Text PDF

Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO]. CO elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO/ABA interaction remain unclear.

View Article and Find Full Text PDF

Guard cells shrink and close stomatal pores when air humidity decreases (i.e. when the difference between the vapor pressures of leaf and atmosphere [VPD] increases).

View Article and Find Full Text PDF

Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency.

View Article and Find Full Text PDF

Changing atmospheric CO levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO concentration, and reduced air humidity.

View Article and Find Full Text PDF

Proper stomatal responses are essential for plant function in an altered environment. The core signaling pathway for abscisic acid (ABA)-induced stomatal closure involves perception of the hormone that leads to the activation of guard cell anion channels by the protein kinase OPEN STOMATA1. Several other regulators are suggested to modulate the ABA signaling pathway, including the protein ENHANCED RESPONSE TO ABA1 (ERA1), that encodes the farnesyl transferase β-subunit.

View Article and Find Full Text PDF

Activation of the guard cell S-type anion channel SLAC1 is important for stomatal closure in response to diverse stimuli, including elevated CO The majority of known SLAC1 activation mechanisms depend on abscisic acid (ABA) signaling. Several lines of evidence point to a parallel ABA-independent mechanism of CO-induced stomatal regulation; however, molecular details of this pathway remain scarce. Here, we isolated a dominant mutation in the protein kinase HIGH LEAF TEMPERATURE1 (HT1), an essential regulator of stomatal CO responses, in an ozone sensitivity screen of Arabidopsis thaliana The mutation caused constitutively open stomata and impaired stomatal CO responses.

View Article and Find Full Text PDF

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion.

View Article and Find Full Text PDF

The discovery of cytosolic ABA receptors is an important breakthrough in stomatal research; signaling via these receptors is involved in determining the basal stomatal conductance and stomatal responsiveness. However, the source of ABA in guard cells is still not fully understood. The level of ABA increases in guard cells by de novo synthesis, recycling from inactive conjugates via β-glucosidases BG1 and BG2 and by import, whereas it decreases by hydroxylation, conjugation, and export.

View Article and Find Full Text PDF