Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation.

Mol Plant

Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland.

Published: September 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The discovery of cytosolic ABA receptors is an important breakthrough in stomatal research; signaling via these receptors is involved in determining the basal stomatal conductance and stomatal responsiveness. However, the source of ABA in guard cells is still not fully understood. The level of ABA increases in guard cells by de novo synthesis, recycling from inactive conjugates via β-glucosidases BG1 and BG2 and by import, whereas it decreases by hydroxylation, conjugation, and export. ABA importers include the NRT1/PTR family protein AIT1, ATP-binding cassette protein ABCG40, and possibly ABCG22, whereas the DTX family member DTX50 and ABCG25 function as ABA exporters. Here, we review the proteins involved in ABA transport and homeostasis and their physiological role in stomatal regulation. Recent experiments suggest that functional redundancy probably exists among ABA transporters between vasculature and guard cells and ABA recycling proteins, as stomatal functioning remained intact in abcg22, abcg25, abcg40, ait1, and bg1bg2 mutants. Only the initial response to reduced air humidity was significantly delayed in abcg22. Considering the reports showing autonomous ABA synthesis in guard cells, we discuss that rapid stomatal responses to atmospheric factors might depend primarily on guard cell-synthesized ABA, whereas in the case of long-term soil water deficit, ABA synthesized in the vasculature might have a significant role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2015.06.006DOI Listing

Publication Analysis

Top Keywords

guard cells
16
aba
11
transport homeostasis
8
stomatal regulation
8
stomatal
7
guard
5
abscisic acid
4
acid transport
4
homeostasis context
4
context stomatal
4

Similar Publications

Cancer remains the second leading cause of death worldwide, highlighting the urgent need for novel therapeutic approaches. Fungi are a rich source of bioactive metabolites, some of which exhibit potent anticancer properties. This scoping review evaluates the current research on fungal metabolites with anticancer potential, focusing on species native to Saudi Arabia's unique ecosystem.

View Article and Find Full Text PDF

Excessive P effects in the growth of Solanum lycopersicum related to stomatal closing mediated by ABA and ethylene.

Plant Sci

September 2025

Instituto de Ciências Naturais (ICN), Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Centro, zip code 37130-001, Alfenas, MG, Brazil. Electronic address:

Phosphorus (P) is an essential macronutrient for plant growth and development; however, both its deficiency and excess can be harmful. Although the effects of excess P are still poorly understood, research has shown that plants exposed to excessive levels of P exhibit reductions in stomatal conductance, photosynthesis, and growth. The aim of this study was to investigate the effect of different P concentrations on stomatal responses, photochemical parameters, growth, and development of three Solanum lycopersicum genotypes: wild type, Never ripe (lower sensitivity to ethylene), and Notabilis (deficient in ABA production).

View Article and Find Full Text PDF

Differential regulation of calcium-activated plant kinases in Arabidopsis thaliana.

Plant J

September 2025

Biological Information Processing Group, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.

The decoding of calcium signals by plant calcium-dependent kinases (CPKs) is not fully understood yet. Based on kinetic in vitro measurements of the activity of several CPK proteins, their individual activity profile was modeled and coupled to cytosolic calcium concentration changes from in vivo measurements of guard cells and epidermal leaf cells. In addition, computationally produced surrogate data were used.

View Article and Find Full Text PDF

The rice cation/calcium exchanger OsCCX2 is involved in calcium signal clearance and osmotic tolerance.

J Integr Plant Biol

September 2025

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.

View Article and Find Full Text PDF

Cadmium (Cd) stress severely hampers plant growth in forest ecosystems. Although magnesium oxide nanoparticles (MgONPs) are known to reduce Cd toxicity in numerous plant species, their detoxification mechanisms in Moso bamboo () remain unexplored. The present study investigates how MgONPs mitigate the Cd-induced phytotoxic effects in by examining morpho-physiological and cellular oxidative repair mechanisms.

View Article and Find Full Text PDF