The rice cation/calcium exchanger OsCCX2 is involved in calcium signal clearance and osmotic tolerance.

J Integr Plant Biol

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis. However, there has been no report on their function in calcium signal clearance (CaSC) in plants, especially in crops. Here, we investigated the role of a rice cation/calcium exchanger OsCCX2 in modulating calcium signaling dynamics using two distinct calcium reporters aequorin and GCaMP6s. The results showed that, under osmotic stress conditions, CaSC was significantly delayed in both root and guard cells of ccx2 mutants compared with the wild-type. Further studies revealed that hyperosmotic stress-triggered influxes of sodium (Na), potassium (K), and chloride (Cl) ions were significantly reduced in ccx2 mutants, resulting in a significantly smaller range of osmotic pressure and water potentials (Ψ) adjustment. In addition, the stomatal response was impaired, with a faster water loss in ccx2 in response to hyperosmotic stress. Furthermore, the absence of OsCCX2 altered the expression patterns of key osmotic-responsive genes, but their transcriptional activation was unaffected. Collectively, these changes ultimately led to reduced hyperosmotic stress tolerance in the mutants. Additionally, OsCCX2 is likely to be located in the endoplasmic reticulum and plasma membrane, and possess Na/Ca exchange activity. To sum up, our findings provide evidence that OsCCX2, as a CaSC regulator, is involved in cell osmotic adjustment, water homeostasis and osmotic stress tolerance in rice, which offers new insight into potential applications in drought-resistant crop improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.70029DOI Listing

Publication Analysis

Top Keywords

calcium signal
12
calcium signaling
12
rice cation/calcium
8
cation/calcium exchanger
8
exchanger osccx2
8
signal clearance
8
osmotic-induced calcium
8
osmotic stress
8
ccx2 mutants
8
hyperosmotic stress
8

Similar Publications

Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.

View Article and Find Full Text PDF

Potential Role of the PGE2-EP4-Ca2+ Signaling Axis in Post-Traumatic Osteoarthritis.

J Vis Exp

August 2025

Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences;

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease triggered by trauma or intense mechanical stress, leading to joint cartilage degeneration and functional impairment. Prostaglandin E2 (PGE2) contributes significantly to cartilage degradation following mechanical injury by activating its receptor, Prostaglandin E receptor 4 (EP4), on chondrocyte membranes. The homeostasis of articular cartilage primarily relies on the dynamic balance between cartilage degradation and repair, a process finely regulated by chondrocytes.

View Article and Find Full Text PDF

Myocardial ischemia-reperfusion injury (MIRI) endures as a substantial impediment to the management of cardiovascular disease. The pathophysiology of MIRI is complex, involving oxidative stress, calcium overload, inflammation, and apoptosis. The NRG1/ErbB4 signaling pathway has been implicated in modulating oxidative stress responses in the heart, potentially reducing cellular damage caused by free radicals.

View Article and Find Full Text PDF

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF

Engineering a cell-free bone regeneration platform using osteogenically primed MSC-EVs and nHAp-enriched IPN hydrogels.

Regen Med

September 2025

Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.

Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.

Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.

View Article and Find Full Text PDF