Publications by authors named "Pirko Jalakas"

Stomatal pores in leaves mediate CO2 uptake into the plant and water loss via transpiration. Most plants are hypostomatous with stomata present only in the lower leaf surface (abaxial epidermis). Many herbs, including the model plant Arabidopsis, have substantial numbers of stomata also on the upper (adaxial) leaf surface.

View Article and Find Full Text PDF

Vapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants.

View Article and Find Full Text PDF

Initiation of stomatal closure by various stimuli requires activation of guard cell plasma membrane anion channels, which are defined as rapid (R)- and slow (S)-type. The single-gene loss-of-function mutants of these proteins are well characterized. However, the impact of suppressing both the S- and R-type channels has not been studied.

View Article and Find Full Text PDF

Stomata, small pores on the surfaces of leaves formed by a pair of guard cells, adapt rapidly to changes in the environment by adjusting the aperture width. As a long-term response, the number of stomata is regulated during stomatal development. The hormone abscisic acid (ABA) regulates both processes.

View Article and Find Full Text PDF

Arabidopsis thaliana cyclic nucleotide-gated ion channel gene 4 (AtCNGC4) loss-of-function mutant dnd2 exhibits elevated accumulation of salicylic acid (SA), dwarfed morphology, reduced hypersensitive response (HR), altered disease resistance and spontaneous lesions on plant leaves. An orthologous barley mutant, nec1, has been reported to over-accumulate indole-3-acetic acid (IAA) and to exhibit changes in stomatal regulation in response to exogenous auxin. Here we show that the Arabidopsis dnd2 over-accumulates both IAA and abscisic acid (ABA) and displays related phenotypic and physiological changes, such as, reduced stomatal size, higher stomatal density and stomatal index.

View Article and Find Full Text PDF

Guard cells shrink and close stomatal pores when air humidity decreases (i.e. when the difference between the vapor pressures of leaf and atmosphere [VPD] increases).

View Article and Find Full Text PDF

This is a protocol for isolation of guard cell enriched samples from plants for RNA extraction. Leaves are blended in ice-water and filtered through nylon mesh to obtain guard cell enriched fragments. With guard cell enriched samples, gene expression analysis can be done, , comparing different gene expression levels in guard cells versus whole leaf to determine if a gene of interest is predominantly expressed in guard cells.

View Article and Find Full Text PDF

Proper stomatal responses are essential for plant function in an altered environment. The core signaling pathway for abscisic acid (ABA)-induced stomatal closure involves perception of the hormone that leads to the activation of guard cell anion channels by the protein kinase OPEN STOMATA1. Several other regulators are suggested to modulate the ABA signaling pathway, including the protein ENHANCED RESPONSE TO ABA1 (ERA1), that encodes the farnesyl transferase β-subunit.

View Article and Find Full Text PDF

The discovery of cytosolic ABA receptors is an important breakthrough in stomatal research; signaling via these receptors is involved in determining the basal stomatal conductance and stomatal responsiveness. However, the source of ABA in guard cells is still not fully understood. The level of ABA increases in guard cells by de novo synthesis, recycling from inactive conjugates via β-glucosidases BG1 and BG2 and by import, whereas it decreases by hydroxylation, conjugation, and export.

View Article and Find Full Text PDF