Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stomatal pores in leaves mediate CO2 uptake into the plant and water loss via transpiration. Most plants are hypostomatous with stomata present only in the lower leaf surface (abaxial epidermis). Many herbs, including the model plant Arabidopsis, have substantial numbers of stomata also on the upper (adaxial) leaf surface. Studies of stomatal development have mostly focused on abaxial stomata and very little is known of adaxial stomatal formation. We analysed the role of leaf number in determining stomatal density and stomatal ratio, and studied adaxial and abaxial stomatal patterns in Arabidopsis mutants deficient in known abaxial stomatal development regulators. We found that stomatal density in some genetic backgrounds varies between different fully expanded leaves, and thus we recommend using defined leaves for analyses of stomatal patterning. Our results indicate that stomatal development is at least partly independently regulated in adaxial and abaxial epidermis, as (i) plants deficient in ABA biosynthesis and perception have increased stomatal ratios, (ii) the epf1epf2, tmm, and sdd1 mutants have reduced stomatal ratios, (iii) erl2 mutants have increased adaxial but not abaxial stomatal index, and (iv) stomatal precursors preferentially occur in abaxial epidermis. Further studies of adaxial stomata can reveal new insights into stomatal form and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523041PMC
http://dx.doi.org/10.1093/jxb/erae354DOI Listing

Publication Analysis

Top Keywords

stomatal
16
adaxial abaxial
16
abaxial epidermis
16
stomatal development
12
abaxial stomatal
12
stomatal patterning
8
regulated adaxial
8
abaxial
8
leaf surface
8
stomatal density
8

Similar Publications

Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.

View Article and Find Full Text PDF

Drought stress has profound impacts on ecosystems and societies, particularly in the context of climate change. Traditional drought indicators, which often rely on integrated water budget anomalies at various time scales, provide valuable insights but often fail to deliver clear, real-time assessments of vegetation stress. This study introduces the Cooling Efficiency Factor Index (CEFI), a novel metric purely derived from geostationary satellite observations, to detect vegetation drought stress by analyzing daytime surface warming anomalies.

View Article and Find Full Text PDF

Divergent leaf water strategies in three coexisting desert shrub species: from the perspective of hydraulic, stomatal, and economic traits.

Tree Physiol

September 2025

Linze Inland River Basin Research Station, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e.

View Article and Find Full Text PDF

Thermal imaging is a key plant phenotyping and monitoring technique but faces major bottlenecks in accurately and efficiently inferring stomatal conductance (g) from leaf temperature. The conductance index (I) was previously proposed to estimate g from thermography by linking temperature differences between real and artificial leaves (ALs) based on the leaf energy balance. However, I is highly sensitive to environmental fluctuations, hampering interpretation and reducing reproducibility.

View Article and Find Full Text PDF

Excessive P effects in the growth of Solanum lycopersicum related to stomatal closing mediated by ABA and ethylene.

Plant Sci

September 2025

Instituto de Ciências Naturais (ICN), Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Centro, zip code 37130-001, Alfenas, MG, Brazil. Electronic address:

Phosphorus (P) is an essential macronutrient for plant growth and development; however, both its deficiency and excess can be harmful. Although the effects of excess P are still poorly understood, research has shown that plants exposed to excessive levels of P exhibit reductions in stomatal conductance, photosynthesis, and growth. The aim of this study was to investigate the effect of different P concentrations on stomatal responses, photochemical parameters, growth, and development of three Solanum lycopersicum genotypes: wild type, Never ripe (lower sensitivity to ethylene), and Notabilis (deficient in ABA production).

View Article and Find Full Text PDF